• Lý thuyết Phương trình mặt cầu

    1. Phương trình mặt cầu trong không gian Khái niệm mặt cầu Trong không gian, cho điểm I và số dương R. Mặt cầu tâm I, bán kính R, kí hiệu S(I;R) là tập hợp các điểm M trong không gian thỏa mãn IM = R. Đoạn thẳng nối hai điểm thuộc mặt cầu và đi qua tâm I là đường kính mặt cầu.

    Xem chi tiết
  • Câu hỏi mục 1 trang 61, 62, 63

    Trong không gian (Oxyz), cho mặt cầu (Sleft( {I;R} right)) có tâm (Ileft( {a;b;c} right)) và bán kính (R). Xét một điểm (Mleft( {x;y;z} right)) thay đổi. a) Tính khoảng cách (IM) theo (x), (y), (z) và (a), (b), (c). b) Nêu điều kiện cần và đủ của (x), (y), (z) để điểm (Mleft( {x;y;z} right)) nằm trên mặt cầu (Sleft( {I;R} right)).

    Xem lời giải
  • Câu hỏi mục 2 trang 63, 64

    Bề mặt của một bóng thám không dạng hình cầu có phương trình ({x^2} + {y^2} + {z^2} - 200x - 600y - {rm{4 000}}z + {rm{4 099 900}} = 0). Tìm toạ độ tâm và bán kính mặt cầu.

    Xem lời giải
  • Bài 1 trang 65

    Viết phương trình mặt cầu (left( S right)): a) Có tâm (Ileft( {7; - 3;0} right)), bán kính (R = 8). b) Có tâm (Mleft( {3;1; - 4} right)) và đi qua điểm (Nleft( {1;0;1} right)). c) Có đường kính (AB) với (Aleft( {4;6;8} right)) và (Bleft( {2;4;4} right)).

    Xem lời giải
  • Bài 2 trang 65

    Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính của mặt cầu đó. a) ({x^2} + {y^2} + {z^2} + 5x - 7y + z - 1 = 0). b) ({x^2} + {y^2} + {z^2} + 4x + 6y - 2z + 100 = 0). c) ({x^2} + {y^2} + {z^2} - x - y - z + frac{1}{2} = 0).

    Xem lời giải
  • Bài 3 trang 65

    Cho hai điểm (Aleft( {1;0;0} right)) và (Bleft( {5;0;0} right)). Chứng minh rằng nếu điểm (Mleft( {x;y;z} right)) thoả mãn (overrightarrow {MA} .overrightarrow {MB} = 0) thì (M) thuộc một mặt cầu (left( S right)). Tìm tâm và bán kính của (left( S right)).

    Xem lời giải
  • Bài 4 trang 65

    Phần mềm mô phỏng thiết bị thám hiẻm đại dương có dạng hình cầu trong không gian (Oxyz). Cho biết toạ độ tâm mặt cầu là (Ileft( {360;200;400} right)) và bán kính (r = 2{rm{ m}}). Viết phương trình mặt cầu.

    Xem lời giải
  • Bài 5 trang 65

    Người ta muốn thiết kế một bồn chứa khí hoá lỏng hình cầu bằng phần mềm 3D. Cho biết phương trình bề mặt của bồn chứa là (left( S right):{left( {x - 6} right)^2} + {left( {y - 6} right)^2} + {left( {z - 6} right)^2} = 25). Phương trình mặt phẳng chứa nắp là (left( P right):z = 10). a) Tìm tâm và bán kính của bồn chứa. b) Tính khoảng cách từ tâm bồn chứa đến mặt phẳng của nắp.

    Xem lời giải