Giải mục 3 trang 23, 24 SGK Toán 12 tập 1 - Kết nối tri thứcĐường tiệm cận xiên Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Lựa chọn câu để xem lời giải nhanh hơn
HĐ3 Trả lời câu hỏi Hoạt động 3 trang 23 SGK Toán 12 Kết nối tri thức Cho hàm số \(y = f\left( x \right) = x - 1 + \frac{2}{{x + 1}}\) có đồ thị (C) và đường thẳng \(y = x - 1\) như Hình 1.24.
a) Với \(x > - 1\), xét điểm M (x; f(x)) thuộc (C). Gọi H là hình chiếu vuông góc của M trên đường thẳng \(y = x - 1\). Có nhận xét gì về khoảng cách MH khi \(x \to + \infty \)? b) Chứng tỏ rằng \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - \left( {x - 1} \right)} \right] = 0\). Tính chất này thể hiện trên Hình 1.24 như thế nào? Phương pháp giải: Sử dụng kiến thức về giới hạn của hàm số để tính giới hạn. Lời giải chi tiết: a) Nhìn vào đồ thị ta thấy, khi \(x \to + \infty \) thì khoảng cách MH tiến tới 0. b) Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {x - 1 + \frac{2}{{x + 1}} - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{2}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\frac{2}{x}}}{{1 + \frac{1}{x}}} = 0\) Tính chất này được thể hiện trong Hình 1.24 là: Khoảng cách từ điểm M của đồ thị hàm số (C) đến đường thẳng \(y = x - 1\) tiến đến 0 khi \(x \to + \infty \). LT3 Trả lời câu hỏi Luyện tập 3 trang 24 SGK Toán 12 Kết nối tri thức Tìm các tiệm cận đứng và tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right) = \frac{{{x^2} - 4x + 2}}{{1 - x}}\). Phương pháp giải: Sử dụng kiến thức về tìm khái niệm đường tiệm cận xiên để tìm tiệm cận xiên: Đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) gọi là đường tiệm cận xiên (gọi tắt là tiệm cận xiên) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\). Lời giải chi tiết: Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 4x + 2}}{{1 - x}} = + \infty \); \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - 4x + 2}}{{1 - x}} = - \infty \) Vậy tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) là đường thẳng \(x = 1\) Ta có: \(y = f\left( x \right) = \frac{{{x^2} - 4x + 2}}{{1 - x}} = - x + 3 - \frac{1}{{1 - x}}\) Do đó, \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - \left( { - x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 1}}{{1 - x}} = 0\), \(\mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - \left( { - x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 1}}{{1 - x}} = 0\) Vậy tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right)\) là đường thẳng \(y = - x + 3\)
|