Giải mục 3 trang 22, 23, 24 SGK Toán 12 tập 1 - Chân trời sáng tạo

Đường tiệm cận xiên

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Lựa chọn câu để xem lời giải nhanh hơn

 

 

KP3

Trả lời câu hỏi Khám phá 3 trang 22 SGK Toán 12 Chân trời sáng tạo

 

Cho đồ thị của hàm số \(y = \frac{{{x^2} + 1}}{x}\) và đường thẳng y = x. Đường thẳng vuông góc với trục Ox tại điểm x cắt đồ thị hàm số tại điểm M và cắt đường thẳng y = x tại điểm N (Hình 7).

a) Tính \(\mathop {\lim }\limits_{x \to  - \infty } (\frac{{{x^2} + 1}}{x} - x)\) và \(\mathop {\lim }\limits_{x \to  + \infty } (\frac{{{x^2} + 1}}{x} - x)\)

b) Tính MN theo x và nhận xét về MN khi \(x \to  + \infty \) hoặc \(x \to  - \infty \)

 

Phương pháp giải:

Quan sát đồ thị

 

Lời giải chi tiết:

a) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\)

Ta có: \(\mathop {\lim }\limits_{x \to  - \infty } (\frac{{{x^2} + 1}}{x} - x) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{{x^2} + 1 - {x^2}}}{x} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x} = 0\); \(\mathop {\lim }\limits_{x \to  + \infty } (\frac{{{x^2} + 1}}{x} - x) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} + 1 - {x^2}}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{x} = 0\)

Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = x

b) MN = y – x = \(\frac{{{x^2} + 1}}{x} - x = \frac{1}{x}\)

Khi \(x \to  + \infty \) hoặc \(x \to  - \infty \) thì MN tiến dần về 0

 

TH3

Trả lời câu hỏi Thực hành 3 trang 24 SGK Toán 12 Chân trời sáng tạo

 

Tìm tiệm cận xiên của đồ thị hàm số \(y = \frac{{2{x^2} - 3x}}{{x + 5}}\)

 

Phương pháp giải:

Đường thẳng y = ax + b, a ≠ 0, được gọi là đường tiệm cận xiên (hay tiệm cận xiên) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to  - \infty } [f(x) - (ax + b)] = 0\) hoặc \(\mathop {\lim }\limits_{x \to  + \infty } [f(x) - (ax + b)] = 0\)

 

Lời giải chi tiết:

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 5} \right\}\)

Ta có: \(a = \mathop {\lim }\limits_{x \to  + \infty } \frac{y}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\frac{{2{x^2} - 3x}}{{x + 5}}}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2{x^2} - 3x}}{{{x^2} + 5x}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2 - \frac{3}{x}}}{{1 + \frac{5}{x}}} = 2\)

\(b = \mathop {\lim }\limits_{x \to  + \infty } (y - ax) = \mathop {\lim }\limits_{x \to  + \infty } (\frac{{2{x^2} - 3x}}{{x + 5}} - 2x) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - 13x}}{{x + 5}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - 13}}{{1 + \frac{5}{x}}} =  - 13\)

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } [y - (ax + b)] = \mathop {\lim }\limits_{x \to  + \infty } [y - (2x - 3)] = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2{x^2} - 3x}}{{x + 5}} - (2x - 13) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{65}}{{x + 5}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\frac{{65}}{x}}}{{1 + \frac{5}{x}}} = 0\)

Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = 2x - 13

 

TH4

Trả lời câu hỏi Thực hành 4 trang 24 SGK Toán 12 Chân trời sáng tạo

 

Nếu trong một ngày, một xưởng sản xuất được x kilôgam sản phẩm thì chi phí trung bình (tính bằng nghìn đồng) cho một sản phẩm được cho bởi công thức: \(C(x) = \frac{{50x + 2000}}{x}\)

Tìm các đường tiệm cận của hàm số C(x).

 

Phương pháp giải:

- Đường thẳng x = a được gọi là một đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau thoả mãn: \(\mathop {\lim f(x) = }\limits_{x \to {a^ - }}  + \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ + }}  + \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ - }}  - \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ + }}  - \infty \)

- Đường thẳng y = m được gọi là một đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to  - \infty } f(x) = m\) hoặc \(\mathop {\lim }\limits_{x \to  + \infty } f(x) = m\)

- Đường thẳng y = ax + b, a ≠ 0, được gọi là đường tiệm cận xiên (hay tiệm cận xiên) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to  - \infty } [f(x) - (ax + b)] = 0\) hoặc \(\mathop {\lim }\limits_{x \to  + \infty } [f(x) - (ax + b)] = 0\)

 

Lời giải chi tiết:

Tập xác định: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\)

\(\mathop {\lim }\limits_{x \to {0^ + }} C(x) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{50x + 2000}}{x} = \frac{{2000}}{0} =  + \infty \); \(\mathop {\lim }\limits_{x \to {0^ - }} C(x) = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{50x + 2000}}{x} = \frac{{2000}}{0} =  + \infty \)

Vậy tiệm cận đứng của đồ thị hàm số là đường thẳng x = 0

\(\mathop {\lim }\limits_{x \to  + \infty } C(x) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{50x + 2000}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{50 + \frac{{2000}}{x}}}{1} = 50\); \(\mathop {\lim }\limits_{x \to  - \infty } C(x) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{50x + 2000}}{x} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{50 + \frac{{2000}}{x}}}{1} = 50\)

Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng y = 50

 

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close