Giải mục 2 trang 17,18,19 SGK Toán 12 tập 1 - Kết nối tri thức

Cách tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Lựa chọn câu để xem lời giải nhanh hơn

HĐ2

Trả lời câu hỏi Hoạt động 2 trang 17 SGK Toán 12 Kết nối tri thức

Xét hàm số \(y = f\left( x \right) = {x^3} - 2{x^2} + 1\) trên đoạn \(\left[ { - 1;2} \right]\), với đồ thị như Hình 1.16.

 

a) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ { - 1;2} \right]\).

b) Tính đạo hàm f’(x) và tìm các điểm \(x \in \left( { - 1;2} \right)\) mà \(f'\left( x \right) = 0\).

c) Tính giá trị của hàm số tại hai đầu mút của đoạn \(\left[ { - 1;2} \right]\) và tại các điểm x đã tìm ở câu b. So sánh số nhỏ nhất trong các giá trị này với \(\mathop {\min }\limits_{\left[ { - 1;2} \right]} f\left( x \right)\), số lớn nhất trong các giá trị này với \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} f\left( x \right)\).

Phương pháp giải:

Sử dụng kiến thức về khái niệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số để tính: Cho hàm số \(y = f\left( x \right)\) xác định trên tập D.

+ Số M được gọi là giá trị lớn nhất của hàm số \(y = f\left( x \right)\) trên tập D nếu \(f\left( x \right) \le M\) với mọi \(x \in D\) và tồn tại \({x_0} \in D\) sao cho \(f\left( {{x_0}} \right) = M\).

Kí hiệu \(M = \mathop {\max }\limits_{x \in D} f\left( x \right)\) hoặc \(M = \mathop {\max }\limits_D f\left( x \right)\)

+ Số m được gọi là giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên tập D nếu \(f\left( x \right) \ge m\) với mọi \(x \in D\) và tồn tại \({x_0} \in D\) sao cho \(f\left( {{x_0}} \right) = m\).

Kí hiệu \(m = \mathop {\min }\limits_{x \in D} f\left( x \right)\) hoặc \(m = \mathop {\min }\limits_D f\left( x \right)\)

Lời giải chi tiết:

a) Nhìn vào đồ thị ta thấy, trên đoạn \(\left[ { - 1;2} \right]\) ta có:

+ Giá trị lớn nhất của hàm số là \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = f\left( 0 \right) = f\left( 2 \right) = 1\).

+ Giá trị nhỏ nhất của hàm số là \(\mathop {\min }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = f\left( { - 1} \right) =  - 2\).

b) \(f'\left( x \right) = 3{x^2} - 4x,f'\left( x \right) = 0 \Leftrightarrow 3{x^2} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{4}{3}\end{array} \right.\)

Vậy \(x = 0,x = \frac{4}{3}\) thì \(f'\left( x \right) = 0\).

c) Ta có: \(f\left( 0 \right) = 1;f\left( {\frac{4}{3}} \right) = {\left( {\frac{4}{3}} \right)^3} - 2.{\left( {\frac{4}{3}} \right)^2} + 1 = \frac{{ - 5}}{{27}};f\left( { - 1} \right) = {\left( { - 1} \right)^3} - 2.{\left( { - 1} \right)^2} + 1 =  - 2\);

\(f\left( 2 \right) = {2^3} - {2.2^2} + 1 = 1\)

Do đó, số nhỏ nhất trong các giá trị này là \( - 2\), số lớn nhất trong các giá trị này là 1.

Ta thấy: \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = 1\), \(\mathop {\min }\limits_{\left[ { - 1;2} \right]} f\left( x \right) =  - 2\).

LT2

Trả lời câu hỏi Luyện tập 2 trang 18 SGK Toán 12 Kết nối tri thức

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

a) \(y = 2{x^3} - 3{x^2} + 5x + 2\) trên đoạn \(\left[ {0;2} \right]\);

b) \(y = \left( {x + 1} \right){e^{ - x}}\) trên đoạn \(\left[ { - 1;1} \right]\).

Phương pháp giải:

Sử dụng kiến thức về cách tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn để tính: Giả sử \(y = f\left( x \right)\) là hàm số liên tục trên \(\left[ {a;b} \right]\) và có đạo hàm trên (a; b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn \(\left[ {a;b} \right]\) mà đạo hàm \(f'\left( x \right) = 0\).

Các bước tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {a;b} \right]\):

1. Tìm các điểm \({x_1},{x_2},...{x_n} \in \left( {a;b} \right)\), tại đó \(f'\left( x \right) = 0\) hoặc không tồn tại.

2. Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right)\), f(a) và f(b).

3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên.

Ta có: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right),m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\)

Lời giải chi tiết:

a) Ta có: \(y' = 6{x^2} - 6x + 5 = 6\left( {{x^2} - x + \frac{5}{6}} \right) = 6{\left( {x - \frac{1}{2}} \right)^2} + \frac{7}{2} > 0\;\forall x \in \left[ {0;2} \right]\)

Do đó, hàm số \(y = 2{x^3} - 3{x^2} + 5x + 2\) đồng biến trên \(\left[ {0;2} \right]\).

Ta có: \(y\left( 0 \right) = 2;y\left( 2 \right) = {2.2^3} - {3.2^2} + 5.2 + 2 = 16\)

Do đó, \(\mathop {\max }\limits_{\left[ {0;2} \right]} y = y\left( 2 \right) = 16,\mathop {\min }\limits_{\left[ {0;2} \right]} y = y\left( 0 \right) = 2\)

b) Ta có: \(y' = {e^{ - x}} - \left( {x + 1} \right){e^{ - x}} = {e^{ - x}}\left( {1 - x - 1} \right) =  - x.{e^{ - x}}\)

\(y' = 0 \Leftrightarrow  - x.{e^{ - x}} = 0 \Leftrightarrow x = 0\) (thỏa mãn \(x \in \left[ { - 1;1} \right]\))

\(y\left( { - 1} \right) = 0;y\left( 0 \right) = 1;y\left( 1 \right) = \frac{2}{e}\)

Do đó, \(\mathop {\max }\limits_{\left[ { - 1;1} \right]} y = y\left( 0 \right) = 1,\mathop {\min }\limits_{\left[ { - 1;1} \right]} y = y\left( { - 1} \right) = 0\)

VD

Trả lời câu hỏi Vận dụng trang 18 SGK Toán 12 Kết nối tri thức

Trả lời câu hỏi Luyện tập 2 trang 18 SGK Toán 12 Kết nối tri thức

Giả sử sự lây lan của một loại virus ở một địa phương có thể được mô hình hóa bằng hàm số \(N\left( t \right) =  - {t^3} + 12{t^2},0 \le t \le 12,\) trong đó N là số người bị nhiễm bệnh (tính bằng trăm người) và t là thời gian (tuần).

a) Hãy ước tính số người tối đa bị nhiễm bệnh ở địa phương đó.

b) Đạo hàm N’(t) biểu thị tốc độ lây lan của virus (còn gọi là tốc độ truyền bệnh). Hỏi virus sẽ lây lan nhanh nhất khi nào?

Phương pháp giải:

Sử dụng kiến thức về cách tìm giá trị lớn nhất của hàm số trên một đoạn để tính: Giả sử \(y = f\left( x \right)\) là hàm số liên tục trên \(\left[ {a;b} \right]\) và có đạo hàm trên (a; b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn \(\left[ {a;b} \right]\) mà đạo hàm \(f'\left( x \right) = 0\).

Các bước tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một \(\left[ {a;b} \right]\):

1. Tìm các điểm \({x_1},{x_2},...{x_n} \in \left( {a;b} \right)\), tại đó \(f'\left( x \right) = 0\) hoặc không tồn tại.

2. Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right)\), f(a) và f(b).

3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên. Ta có:

\(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right),m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\)

Lời giải chi tiết:

a) Với \(0 \le t \le 12\) ta có:

\(N'\left( t \right) =  - 3{t^2} + 24t,N'\left( t \right) = 0 \Leftrightarrow  - 3{t^2} + 24t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\left( {tm} \right)\\t = 8\left( {tm} \right)\end{array} \right.\)

Ta có: \(N\left( 0 \right) = 0,N\left( 8 \right) =  - {8^3} + {12.8^2} = 256,N\left( {12} \right) =  - {12^3} + {12.12^2} = 0\)

Do đó, số người tối đa bị nhiễm bệnh ở địa phương là 256 người trong 12 tuần đầu.

b) Hàm số biểu thị tốc độ độ lây lan của virus là: \(N'\left( t \right) =  - 3{t^2} + 24t\)

Đặt \(f\left( t \right) =  - 3{t^2} + 24t\), với \(0 \le t \le 12\)

Ta có: \(f'\left( t \right) =  - 6t + 24,f'\left( t \right) = 0 \Leftrightarrow t = 4\left( {tm} \right)\)

\(f\left( 0 \right) = 0,f\left( 4 \right) =  - {3.4^2} + 24.4 = 48,f\left( {12} \right) =  - {3.12^2} + 24.12 =  - 144\)

Do đó, virus sẽ lây lan nhanh nhất khi \(t = 4\) (tuần thứ 4).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close