Giải mục 1 trang 65, 66, 67 SGK Toán 11 tập 1 - Cùng khám phá

Cho dãy số (left( {{x_n}} right)) với ({x_n} = 1 + frac{1}{n}). Xét hàm số (f(x) = {x^2} - 2x)

Lựa chọn câu để xem lời giải nhanh hơn

Hoạt động 1

Cho dãy số \(\left( {{x_n}} \right)\) với \({x_n} = 1 + \frac{1}{n}\). Xét hàm số \(f(x) = {x^2} - 2x\)

a, Tính \(f({x_n})\) theo n.

b, Tìm \(\lim {x_n}\) và \(\lim f\left( {{x_n}} \right)\).

Phương pháp giải:

a, Thay giá trị của \({x_n}\) vào f(x).

b, Áp dụng giới hạn của dãy số để tính \(\lim {x_n}\) và \(\lim f\left( {{x_n}} \right)\).

Lời giải chi tiết:

a, Thay \({x_n} = 1 + \frac{1}{n}\) vào hàm số \(f(x) = {x^2} - 2x\) ta được:

\(f({x_n}) = {\left( {1 + \frac{1}{n}} \right)^2} - 2.(1 + \frac{1}{n}) = 1 + \frac{2}{n} + \frac{1}{{{n^2}}} - 2 - \frac{2}{n} =  - 1 + \frac{1}{{{n^2}}}\)

b, Vì lim1=1, \(\lim \frac{1}{n} = 0\), \(\lim \frac{1}{{{n^2}}} = 0\) nên:

\({\mathop{\rm l}\nolimits} {\rm{im }}{{\rm{x}}_n} = \lim (1 + \frac{1}{n}) = 1\) và \(\lim f({x_n}) = \lim ( - 1 + \frac{1}{{{n^2}}}) =  - 1\).

Luyện tập 1

Cho hàm số \(f(x) = \frac{{{x^2} - 3x + 2}}{{x - 2}}\). Tìm \(\mathop {\lim }\limits_{x \to 2} f(x)\).

Phương pháp giải:

Chia tử cho mẫu và xác định giới hạn theo biểu thức đã chia.

Lời giải chi tiết:

f(x) xác định trên R\{2}

Với mọi dãy \(\left( {{x_n}} \right)\) mà \({x_n} \ne 2\), và \({\mathop{\rm l}\nolimits} {\rm{im }}{{\rm{x}}_n} = 2\), ta có:

\(\lim f({x_n}) = \lim \frac{{x_n^2 - 3{x_n} + 2}}{{{x_n} - 2}} = \lim \frac{{({x_n} - 1).({x_n} - 2)}}{{{x_n} - 2}}\)=\(\lim ({x_n} - 1) = 1\)

Vậy \(\mathop {\lim }\limits_{x \to 2} f(x) = 1\).

Hoạt động 2

a, Chứng minh rằng \(\mathop {\lim }\limits_{x \to 2} {x^2} = 4\) và \(\mathop {\lim }\limits_{x \to 2} (x + 1) = 3\).

b, Tìm \(\mathop {\lim }\limits_{x \to 2} ({x^2} + x + 1)\) và \(\mathop {\lim }\limits_{x \to 2} {x^2}(x + 1)\).

Phương pháp giải:

a, Xác định giới hạn của hàm số dựa vào giới hạn của dãy số \(\mathop {\lim }\limits_{{x_n} \to 2} \)

b, Áp dụng câu a để tính giới hạn ở câu b.

Lời giải chi tiết:

a, f(x) xác định trên R.

Với mọi dãy \(\left( {{x_n}} \right)\) mà \({x_n} \ne 2\), và \({\mathop{\rm l}\nolimits} {\rm{im }}{{\rm{x}}_n} = 2\), ta có:

\(\mathop {\lim }\limits_{x \to 2} {x^2} = \lim {({x_n})^2} = {2^2} = 4\) và \(\mathop {\lim }\limits_{x \to 2} (x + 1) = {\mathop{\rm l}\nolimits} {\rm{im (}}{{\rm{x}}_n} + 1) = 2 + 1 = 3\).

b, Ta có : \(\mathop {\lim }\limits_{x \to 2} ({x^2} + x + 1) = \mathop {\lim }\limits_{x \to 2} {x^2} + \mathop {\lim }\limits_{x \to 2} (x + 1) = 4 + 3 = 7\)

                \(\mathop {\lim }\limits_{x \to 2} {x^2}(x + 1) = \mathop {\lim }\limits_{x \to 2} {x^2}.\mathop {\lim }\limits_{x \to 2} (x + 1) = 4.3 = 12\).

Luyện tập 2

Tìm \(\mathop {\lim }\limits_{x \to  - 1} \frac{{{x^3} + {x^2} + x + 1}}{{x + 1}}\) và \(\mathop {\lim }\limits_{x \to  - 6} \frac{{{x^2} + \sqrt {2 - x} }}{{{{(2 + x)}^2}}}\).

Phương pháp giải:

Với \(\mathop {\lim }\limits_{x \to  - 1} \frac{{{x^3} + {x^2} + x + 1}}{{x + 1}}\) ta rút gọn hàm số và xác định giới hạn.

Với \(\mathop {\lim }\limits_{x \to  - 6} \frac{{{x^2} + \sqrt {2 - x} }}{{{{(2 + x)}^2}}}\) tính \(\mathop {\lim }\limits_{x \to  - 6} \left( {{x^2} + \sqrt {2 - x} } \right)\) và \(\mathop {\lim }\limits_{x \to  - 6} {(2 + x)^2}\) và áp dụng \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x)}}{{g(x)}} = \frac{A}{B},B \ne 0\)

Lời giải chi tiết:

a, Hàm số \(\frac{{{x^3} + {x^2} + x + 1}}{{x + 1}}\) xác định trên R\{-1}

Với \(x \ne  - 1\) ta có:

\(\frac{{{x^3} + {x^2} + x + 1}}{{x + 1}} = \frac{{({x^3} + {x^2}) + (x + 1)}}{{x + 1}} = \frac{{{x^2}(x + 1) + (x + 1)}}{{x + 1}}\)= \(\frac{{({x^2} + 1).(x + 1)}}{{x + 1}} = {x^2} + 1\)

Vậy \(\mathop {\lim }\limits_{x \to  - 1} \frac{{{x^3} + {x^2} + x + 1}}{{x + 1}}\)=\(\mathop {\lim }\limits_{x \to  - 1} \left( {{x^2} + 1} \right) = {( - 1)^2} + 1 = 2\)

b, Ta có: \(\mathop {\lim }\limits_{x \to  - 6} \left( {{x^2} + \sqrt {2 - x} } \right) = {( - 6)^2} + \sqrt {2 - ( - 6)}  = 36 + \sqrt 8  = 36 + 2\sqrt 2 \)

               \(\mathop {\lim }\limits_{x \to  - 6} {(2 + x)^2} = {(2 - 6)^2} = 16\)

Vậy \(\mathop {\lim }\limits_{x \to  - 6} \frac{{{x^2} + \sqrt {2 - x} }}{{{{(2 + x)}^2}}} = \frac{{36 + 2\sqrt 2 }}{{16}} = \frac{{18 + \sqrt 2 }}{8}\).

Hoạt động 3

Cho hàm số \(f(x) = \frac{1}{{{x^2}}}\) và dãy số \(({x_n})\) mà \(\lim ({x_n}) = 0\). Tính \(\lim f({x_n})\).

Phương pháp giải:

Tính lim 1 và \(\lim {({x_n})^2}\) sau đó tính \(\lim f({x_n})\).

Lời giải chi tiết:

Với mọi dãy \(({x_n})\) mà \(\lim ({x_n}) = 0\) ta có \(\lim {({x_n})^2}\)= 0 và lim 1=1

Vậy \(\lim f(x) = \lim \frac{1}{{x_n^2}} =  + \infty \).

Luyện tập 3

Tìm \(\mathop {\lim }\limits_{x \to 0} \frac{2}{{2 - \sqrt {{x^2} + 4} }}\).

Phương pháp giải:

Tìm \(\lim (2 - \sqrt {4 + x_n^2} )\) để xác định \(\mathop {\lim }\limits_{x \to 0} \frac{2}{{2 - \sqrt {{x^2} + 4} }}\).

Lời giải chi tiết:

Với mọi dãy \(({x_n})\) mà \(\lim ({x_n}) = 0\), ta có \(2 - \sqrt {4 + x_n^2}  > 0\) vì (\({x_n} \ne 0\)) và \(\lim (2 - \sqrt {4 + x_n^2} )\)=0

Vì lim 1=1 nên \(\lim \frac{2}{{2 - \sqrt {{x_n}^2 + 4} }} =  + \infty \).

Vậy \(\mathop {\lim }\limits_{x \to 0} \frac{2}{{2 - \sqrt {{x^2} + 4} }} =  + \infty \).

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close