Bài 3.7 trang 74 SGK Toán 11 tập 1 - Cùng khám phá

Tính các giới hạn sau:

Đề bài

Tính các giới hạn sau:

a, \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2} + 3x + 5}}{{x + 1}}\)

b, \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + x - 6}}{{{x^2} - 4}}\)

c, \(\mathop {\lim }\limits_{x \to  - 2} \frac{{\sqrt {x + 11}  - 3}}{{x + 2}}\)

d, \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{3{x^2} + x + 10}}{{2{x^2} - 1}}\)

e, \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{5{x^3} + 9}}{{{x^4} + 1}}\)

g, \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} + 1} }}{x}\)

Phương pháp giải - Xem chi tiết

a, Tính giới hạn tử và mẫu để được giới hạn hàm số

b, Phân tích tử và rút gọn rồi tính giới hạn

c, Nhân liên hợp tử rồi rút gọn và tính giới hạn

d, e, Chia cả tử và mẫu cho x với bậc cao nhất và tính giới hạn

e, Đưa x ra khỏi dấu căn và rút gọn để tính giới hạn

Lời giải chi tiết

a, Ta có: \(\mathop {\lim }\limits_{x \to 0} ({x^2} + 3x + 5) = 5\) và \(\mathop {\lim }\limits_{x \to 0} (x + 1) = 1\)

Vậy \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2} + 3x + 5}}{{x + 1}} = 5\)

b, Ta có : \(f(x) = \frac{{{x^2} + x - 6}}{{{x^2} - 4}} = \frac{{(x + 3).(x - 2)}}{{(x - 2).(x + 2)}} = \frac{{x + 3}}{{x + 2}}\)

\(\mathop {\lim }\limits_{x \to 2} (x + 3) = 5\) và \(\mathop {\lim }\limits_{x \to 2} (x + 2) = 4\)

Vậy \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + x - 6}}{{{x^2} - 4}} = \frac{5}{4}\).

c, Ta có: \(f(x) = \frac{{\sqrt {x + 11}  - 3}}{{x + 2}} = \frac{{(\sqrt {x + 11}  - 3)(\sqrt {x + 11}  + 3)}}{{x + 2}} = \frac{{x + 11 - {3^2}}}{{x + 2}} = 1\)

\(\mathop {\lim }\limits_{x \to  - 2} 1 = 1\)

Vậy \(\mathop {\lim }\limits_{x \to  - 2} \frac{{\sqrt {x + 11}  - 3}}{{x + 2}} = 1\)

d, Ta có: \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{3{x^2} + x + 10}}{{2{x^2} - 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{3 + \frac{1}{x} + \frac{{10}}{{{x^2}}}}}{{2 - \frac{1}{{{x^2}}}}} = \frac{3}{2}\)

e, Ta có: \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{5{x^3} + 9}}{{{x^4} + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{5 + \frac{9}{{{x^4}}}}}{{1 + \frac{1}{{{x^4}}}}} = 5\)

g, Ta có: \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{\left| x \right|.\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x.\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to  - \infty } ( - \sqrt {1 + \frac{1}{{{x^2}}}} ) =  - 1\).

2K7 tham gia ngay group để nhận thông tin thi cử, tài liệu miễn phí, trao đổi học tập nhé!

close