Giải bài tập 7 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạoCó hai cái hộp giống nhau, hộp thứ nhất chứa 5 quả bóng bàn màu trắng và 3 quả bóng bàn màu vàng, hộp thứ hai chứa 4 quả bóng bàn màu trắng và 6 quả bóng bàn màu vàng. Các quả bóng có cùng kích thước và khối lượng. Minh lấy ra ngẫu nhiên 1 quả bóng từ hộp thứ nhất. Nếu quả bóng đó là bóng vàng thì Minh lấy ra ngẫu nhiên đồng thời 2 quả bóng từ hộp thứ hai; nếu quả bóng đó màu trắng thì Minh lấy ra ngẫu nhiên 3 quả bóng từ hộp thứ hai. a) Sử dụng sơ đồ hình cây, tính xác suất để có đúng 1 quả bó Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài Có hai cái hộp giống nhau, hộp thứ nhất chứa 5 quả bóng bàn màu trắng và 3 quả bóng bàn màu vàng, hộp thứ hai chứa 4 quả bóng bàn màu trắng và 6 quả bóng bàn màu vàng. Các quả bóng có cùng kích thước và khối lượng. Minh lấy ra ngẫu nhiên 1 quả bóng từ hộp thứ nhất. Nếu quả bóng đó là bóng vàng thì Minh lấy ra ngẫu nhiên đồng thời 2 quả bóng từ hộp thứ hai; nếu quả bóng đó màu trắng thì Minh lấy ra ngẫu nhiên 3 quả bóng từ hộp thứ hai. a) Sử dụng sơ đồ hình cây, tính xác suất để có đúng 1 quả bóng màu vàng trong các quả bóng lấy ra từ hộp thứ hai. b) Biết rằng các quả bóng lấy ra từ hộp thứ hai đều có màu trắng. Tính xác suất để quả bóng lấy ra từ hộp thứ nhất có màu vàng. Phương pháp giải - Xem chi tiết a) Gọi \(A\) là biến cố “Lấy được quả bóng vàng ở hộp thứ nhất”, \(B\) là biến cố “Chọn được đúng 1 quả bóng vàng ở hộp thứ hai”. Sử dụng sơ đồ hình cây và công thức tính xác suất toàn phần để tính \(P\left( B \right)\). b) Gọi \(C\) là biến cố “Tất cả quả bóng lấy ra ở hộp thứ hai đều có màu trắng”. Xác suất cần tính là \(P\left( {A|C} \right)\). Sử dụng công thức Bayes để tính xác suất này. Lời giải chi tiết Gọi \(A\) là biến cố “Lấy được quả bóng vàng ở hộp thứ nhất”, \(B\) là biến cố “Chọn được đúng 1 quả bóng vàng ở hộp thứ hai”. Ta có \(P\left( A \right) = \frac{3}{{3 + 5}} = \frac{3}{8}\) và \(P\left( {\bar A} \right) = 1 - \frac{3}{8} = \frac{5}{8}\). Khi lấy được quả bóng vàng ở hộp thứ nhất, Minh sẽ lấy ngẫu nhiên đồng thời 2 quả bóng ở hộp thứ hai. Do đó \(P\left( {B|A} \right) = \frac{{4.6}}{{C_{10}^2}} = \frac{8}{{15}}\). Khi lấy được quả bóng trắng ở hộp thứ nhất, Minh sẽ lấy ngẫu nhiên đồng thời 3 quả bóng ở hộp thứ hai. Do đó \(P\left( {B|\bar A} \right) = \frac{{6.C_4^2}}{{C_{10}^3}} = \frac{3}{{10}}\). Vậy ta có sơ đồ hình cây sau: Dựa vào sơ đồ hình cây, ta có \(P\left( B \right) = \frac{1}{5} + \frac{3}{{16}} = \frac{{31}}{{80}}\). b) Gọi \(C\) là biến cố “Tất cả quả bóng lấy ra ở hộp thứ hai đều có màu trắng”. Xác suất cần tính là \(P\left( {A|C} \right)\). Ta có \(P\left( C \right) = P\left( A \right).P\left( {C|A} \right) + P\left( {\bar A} \right).P\left( {C|\bar A} \right)\). Nếu lấy được quả bóng màu vàng ở hộp thứ nhất, Minh sẽ lấy đồng thời ngẫu nhiên 2 quả ở hộp thứ hai. Do đó \(P\left( {C|A} \right) = \frac{{C_4^2}}{{C_{10}^2}} = \frac{2}{{15}}\). Nếu lấy được quả bóng màu trắng ở hộp thứ nhất, Minh sẽ lấy đồng thời ngẫu nhiên 3 quả ở hộp thứ hai. Do đó \(P\left( {C|\bar A} \right) = \frac{{C_4^3}}{{C_{10}^3}} = \frac{1}{{30}}\). Như vậy \(P\left( C \right) = \frac{3}{8}.\frac{2}{{15}} + \frac{5}{8}.\frac{1}{{30}} = \frac{{17}}{{240}}\). Vậy theo công thức Bayes, xác suất để xác suất để quả bóng lấy ra từ hộp thứ nhất có màu vàng là \(P\left( {A|C} \right) = \frac{{P\left( A \right).P\left( {C|A} \right)}}{{P\left( C \right)}} = \frac{{\frac{3}{8}.\frac{2}{{15}}}}{{\frac{{17}}{{240}}}} = \frac{{12}}{{17}}\).
|