Giải bài tập 4.15 trang 25 SGK Toán 12 tập 2 - Kết nối tri thức

Tính diện tích của hình phẳng giới hạn bởi các đường: a) \(y = {e^x},y = {x^2} - 1,x = - 1,x = 1\); b) \(y = \sin x,y = x,x = \frac{\pi }{2},x = \pi \); c) \(y = 9 - {x^2},y = 2{x^2},x = - \sqrt 3 ,x = \sqrt 3 \); d) \(y = \sqrt x ,y = {x^2},x = 0,x = 1\).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

 

 

Tính diện tích của hình phẳng giới hạn bởi các đường:

a) \(y = {e^x},y = {x^2} - 1,x =  - 1,x = 1\);

b) \(y = \sin x,y = x,x = \frac{\pi }{2},x = \pi \);

c) \(y = 9 - {x^2},y = 2{x^2},x =  - \sqrt 3 ,x = \sqrt 3 \);

d) \(y = \sqrt x ,y = {x^2},x = 0,x = 1\).

 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về diện tích hình phẳng giới hạn bởi hai đồ thị hàm số và đường thẳng \(x = a,x = b\) để tính: Diện tích S của hình phẳng giới hạn đồ thị của hai hàm số f(x), g(x) liên tục trên đoạn [a; b] và hai đường thẳng \(x = a,x = b\), được tính bằng công thức \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \). 

 

Lời giải chi tiết

a) Diện tích hình cần tìm là:

\(S = \int\limits_{ - 1}^1 {\left| {{e^x} - {x^2} + 1} \right|dx}  = \int\limits_{ - 1}^1 {\left( {{e^x} - {x^2} + 1} \right)dx}  = \left( {{e^x} - \frac{{{x^3}}}{3} + x} \right)\left| \begin{array}{l}1\\ - 1\end{array} \right.\)

\( = e - \frac{1}{3} + 1 - \left( {\frac{1}{e} + \frac{1}{3} - 1} \right) = e - \frac{1}{e} + \frac{4}{3}\)

b) Diện tích hình cần tính là:

\(S = \int\limits_{\frac{\pi }{2}}^\pi  {\left| {\sin x - x} \right|dx}  =  - \int\limits_{\frac{\pi }{2}}^\pi  {\left( {\sin x - x} \right)dx}  = \left( {\cos x + \frac{{{x^2}}}{2}} \right)\left| \begin{array}{l}\pi \\\frac{\pi }{2}\end{array} \right.\)

\( = \cos \pi  + \frac{{{\pi ^2}}}{2} - \cos \frac{\pi }{2} - \frac{{{\pi ^2}}}{8} =  - 1 + \frac{{3{\pi ^2}}}{8}\)

c) Diện tích hình cần tính là:

\(S = \int\limits_{ - \sqrt 3 }^{\sqrt 3 } {\left| {9 - {x^2} - 2{x^2}} \right|dx}  = \int\limits_{ - \sqrt 3 }^{\sqrt 3 } {\left( {9 - 3{x^2}} \right)dx}  = \left( {9x - {x^3}} \right)\left| \begin{array}{l}\sqrt 3 \\ - \sqrt 3 \end{array} \right.\)

\( = 9\sqrt 3  - {\left( {\sqrt 3 } \right)^3} + 9\sqrt 3  + {\left( { - \sqrt 3 } \right)^3} = 12\sqrt 3 \)

d) Diện tích hình cần tính là:

\(S = \int\limits_0^1 {\left| {\sqrt x  - {x^2}} \right|dx}  = \int\limits_0^1 {\left( {\sqrt x  - {x^2}} \right)dx}  = \left( {\frac{{2x\sqrt x }}{3} - \frac{{{x^3}}}{3}} \right)\left| \begin{array}{l}1\\0\end{array} \right. = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}\)

 

  • Giải bài tập 4.16 trang 25 SGK Toán 12 tập 2 - Kết nối tri thức

    Các nhà kinh tế sử dụng đường cong Lorenz để minh họa sự phân phối thu nhập trong một quốc gia. Gọi x là đại diện cho phần trăm số gia đình trong một quốc gia và y là phần trăm tổng thu nhập, mô hình \(y = x\) sẽ đại diện cho một quốc gia mà các gia đình có thu nhập như nhau. Đường cong Lorenz \(y = f\left( x \right)\), biểu thị phân phối thu nhập thực tế. Diện tích giữa hai mô hình này, với \(0 \le x \le 100\), biểu thị “sự bất bình đẳng về thu nhập” của một quốc gia. Năm 2005, đường cong Loren

  • Giải bài tập 4.17 trang 26 SGK Toán 12 tập 2 - Kết nối tri thức

    Tính thể tích của khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục Ox: \(y = 2x - {x^2},y = 0,x = 0,x = 2\).

  • Giải bài tập 4.18 trang 26 SGK Toán 12 tập 2 - Kết nối tri thức

    Khối chỏm cầu có bán kính R và chiều cao h\(\left( {0 < h \le R} \right)\) sinh ra khi quay hình phẳng giới hạn bởi cung tròn có phương trình \(y = \sqrt {{R^2} - {x^2}} \), trục hoành và hai đường thẳng \(x = R - h,x = R\) xung quanh trục Ox (H.4.30). Tính thể tích của khối chỏm cầu này.

  • Giải bài tập 4.19 trang 26 SGK Toán 12 tập 2 - Kết nối tri thức

    Cho tam giác vuông OAB có cạnh \(OA = a\) nằm trên trục Ox và \(\widehat {AOB} = \alpha \left( {0 < \alpha \le \frac{\pi }{4}} \right)\). Gọi \(\beta \) là khối tròn xoay sinh ra khi quay miền tam giác OAB xung quanh trục Ox (H.4.31). a) Tính thể tích V của \(\beta \) theo a và \(\alpha \). b) Tìm \(\alpha \) sao cho thể tích V lớn nhất.

  • Giải bài tập 4.14 trang 25 SGK Toán 12 tập 2 - Kết nối tri thức

    Tính diện tích của hình phẳng được tô màu trong Hình 4.29.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close