Giải bài tập 2.6 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

Cho hình chóp tứ giác S. ABCD. Chứng minh rằng tứ giác ABCD là hình bình hành nếu và chỉ nếu \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Cho hình chóp tứ giác S. ABCD. Chứng minh rằng tứ giác ABCD là hình bình hành nếu và chỉ nếu \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \). 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về quy tắc ba điểm để chứng minh: Nếu A, B, C là ba điểm bất kì thì \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Sử dụng quy tắc hình bình hành để chứng minh: Nếu ABCD là hình bình hành thì \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Sử dụng kiến thức về hai vectơ bằng nhau để chứng minh: Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau, kí hiệu \(\overrightarrow a  = \overrightarrow b \) nếu chúng có cùng độ dài và cùng hướng.

Lời giải chi tiết

Chứng minh: Nếu tứ giác ABCD là hình bình hành thì \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \)

Gọi O là tâm hình bình hành ABCD. Khi đó, O là trung điểm của AC, BD.

Suy ra \(\overrightarrow {OC}  =  - \overrightarrow {OA} ,\overrightarrow {OD}  =  - \overrightarrow {OB} \)

Ta có: \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SO}  + \overrightarrow {OA}  + \overrightarrow {SO}  + \overrightarrow {OC}  = 2\overrightarrow {SO}  + \left( {\overrightarrow {OA}  - \overrightarrow {OA} } \right) = 2\overrightarrow {SO} \)

\(\overrightarrow {SB}  + \overrightarrow {SD}  = \overrightarrow {SO}  + \overrightarrow {OB}  + \overrightarrow {SO}  + \overrightarrow {OD}  = 2\overrightarrow {SO}  + \left( {\overrightarrow {OB}  - \overrightarrow {OB} } \right) = 2\overrightarrow {SO} \)

Do đó, \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \)

Chứng minh: Nếu \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \) thì tứ giác ABCD là hình bình hành:

Ta có: \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD}  \Leftrightarrow \overrightarrow {SA}  - \overrightarrow {SB}  = \overrightarrow {SD}  - \overrightarrow {SC}  \Leftrightarrow \overrightarrow {BA}  = \overrightarrow {CD} \)

Suy ra, hai vectơ \(\overrightarrow {BA} \) và \(\overrightarrow {CD} \) cùng hướng và có độ lớn bằng nhau.

Suy ra, \(AB = CD,\) AB//CD. Khi đó, tứ giác ABCD là hình bình hành.

Vậy tứ giác ABCD là hình bình hành nếu và chỉ nếu \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \)

  • Giải bài tập 2.5 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

    Cho hình lăng trụ tam giác ABC.A’B’C’ có \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b \) và \(\overrightarrow {AC} = \overrightarrow c \). Hãy biểu diễn các vectơ sau qua các vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \): a) \(\overrightarrow {AB'} \); b) \(\overrightarrow {B'C} \); c) \(\overrightarrow {BC'} \).

  • Giải bài tập 2.4 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

    Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng: a) \(\overrightarrow {AB} + \overrightarrow {DD'} + \overrightarrow {C'D'} = \overrightarrow {CC'} \); b) \(\overrightarrow {AB} + \overrightarrow {CD'} - \overrightarrow {CC'} = \overrightarrow 0 \); c) \(\overrightarrow {BC} - \overrightarrow {CC'} + \overrightarrow {DC} = \overrightarrow {A'C} \)

  • Giải bài tập 2.3 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

    Một chiếc bàn cân đối hình chữ nhật được đặt trên mặt sàn nằm ngang, mặt bàn song song với mặt sàn và bốn chân bàn vuông góc với mặt sàn như Hình 2.29. Trọng lực tác dụng lên bàn (biểu thị bởi vectơ (overrightarrow a )) phân tán đều qua bốn chân bàn và gây nên các phản lực từ mặt sàn lên các chân bàn (biểu thị bởi các vectơ (overrightarrow b ,overrightarrow c ,overrightarrow d ,overrightarrow e )).

  • Giải bài tập 2.2 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có (AB = 2,AD = 3) và (AA' = 4). Tính độ dài của các vectơ (overrightarrow {BB'} ,overrightarrow {BD} ) và (overrightarrow {BD'} ).

  • Giải bài tập 2.1 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

    Trong không gian, cho ba vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) phân biệt và đều khác \(\overrightarrow 0 \). Những mệnh đề nào sau đây là đúng? a) Nếu \(\overrightarrow a \) và \(\overrightarrow b \) đều cùng hướng với \(\overrightarrow c \) thì \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng. b) Nếu \(\overrightarrow a \) và \(\overrightarrow b \) đều ngược hướng với \(\overrightarrow c \) thì \(\overrightarrow a \) và \(\overrightarrow b \) cùng h

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close