Giải bài tập 2.21 trang 72 SGK Toán 12 tập 1 - Kết nối tri thức

Trong không gian Oxyz, cho ba điểm \(M\left( { - 4;3;3} \right),N\left( {4; - 4;2} \right)\) và \(P\left( {3;6; - 1} \right)\). a) Tìm tọa độ của các vectơ \(\overrightarrow {MN} ,\overrightarrow {MP} \), từ đó chứng minh rằng ba điểm M, N, P không thẳng hàng. b) Tìm tọa độ của vectơ \(\overrightarrow {NM} + \overrightarrow {NP} \), từ đó suy ra tọa độ của điểm Q sao cho tứ giác MNPQ là hình bình hành. c) Tính chu vi của hình bình hành MNPQ.

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

 

 

Trong không gian Oxyz, cho ba điểm \(M\left( { - 4;3;3} \right),N\left( {4; - 4;2} \right)\) và \(P\left( {3;6; - 1} \right)\).

a) Tìm tọa độ của các vectơ \(\overrightarrow {MN} ,\overrightarrow {MP} \), từ đó chứng minh rằng ba điểm M, N, P không thẳng hàng.

b) Tìm tọa độ của vectơ \(\overrightarrow {NM}  + \overrightarrow {NP} \), từ đó suy ra tọa độ của điểm Q sao cho tứ giác MNPQ là hình bình hành.

c) Tính chu vi của hình bình hành MNPQ.

 

Phương pháp giải - Xem chi tiết

a) Sử dụng kiến thức về tọa độ của vectơ theo tọa độ hai đầu mút để tìm tọa độ: Trong không gian Oxyz, cho hai điểm \(M\left( {{x_M},{y_M},{z_M}} \right)\) và \(N\left( {{x_N};{y_N};{z_N}} \right)\).

Khi đó, \(\overrightarrow {MN}  = \left( {{x_N} - {x_M};{y_N} - {y_M};{z_N} - {z_M}} \right)\).

+ Sử dụng kiến thức về hai vectơ không cùng phương để chứng minh ba điểm không thẳng hàng: Nếu hai vectơ \(\overrightarrow {MN} ,\overrightarrow {MP} \) không cùng phương thì ba điểm M, N, P không thẳng hàng.

b) Sử dụng quy tắc hình bình hành để tìm tọa độ điểm Q: Để tứ giác MNPQ là hình bình hành thì \(\overrightarrow {NM}  + \overrightarrow {NP}  = \overrightarrow {NQ} \)

Sử dụng kiến thức hệ về biểu thức tọa độ của phép cộng hai vectơ để tính: Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a  = \left( {x;y;z} \right)\) và \(\overrightarrow b  = \left( {x';y';z'} \right)\) thì \(\overrightarrow a  + \overrightarrow b  = \left( {x + x';y + y';z + z'} \right)\)

c) Sử dụng kiến về chu vi hình bình hành để tính: Chu vi hình bình hành MNPQ là: \(C = 2\left( {MN + NP} \right)\).

 

Lời giải chi tiết

a) Ta có: \(\overrightarrow {MN}  = \left( {4 - \left( { - 4} \right); - 4 - 3;2 - 3} \right) = \left( {8; - 7; - 1} \right),\overrightarrow {MP} \left( {7;3; - 4} \right)\)

Vì \(\frac{8}{7} \ne \frac{{ - 7}}{3} \ne \frac{{ - 1}}{{ - 4}}\) nên hai vectơ \(\overrightarrow {MN} ,\overrightarrow {MP} \) không cùng phương. Do đó, ba điểm M, N, P không thẳng hàng.

b)

 

Ta có: \(\overrightarrow {NM} \left( { - 8;7;1} \right),\overrightarrow {NP} \left( { - 1;10; - 3} \right)\).

Suy ra: \(\overrightarrow {NM}  + \overrightarrow {NP}  = \left( {\left( { - 8} \right) + \left( { - 1} \right);7 + 10;1 - 3} \right) = \left( { - 9;17; - 2} \right)\)

Gọi tọa độ điểm Q là Q(x; y; z), ta có: \(\overrightarrow {NQ} \left( {x - 4;y + 4;z - 2} \right)\)

Để tứ giác MNPQ là hình bình hành thì \(\overrightarrow {NM}  + \overrightarrow {NP}  = \overrightarrow {NQ} \)

Suy ra: \(\left\{ \begin{array}{l}x - 4 =  - 9\\y + 4 = 17\\z - 2 =  - 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x =  - 5\\y = 13\\z = 0\end{array} \right.\). Vậy \(Q\left( { - 5;13;0} \right)\)

c) Ta có: \(NM = \left| {\overrightarrow {NM} } \right| = \sqrt {{{\left( { - 8} \right)}^2} + {7^2} + {1^2}}  = \sqrt {114} \), \(NP = \left| {\overrightarrow {NP} } \right| = \sqrt {{{\left( { - 1} \right)}^2} + {{10}^2} + {{\left( { - 3} \right)}^2}}  = \sqrt {110} \)

Vậy chu vi hình bình hành MNPQ là: \(C = 2\left( {NP + NM} \right) = 2\left( {\sqrt {114}  + \sqrt {110} } \right)\)

 

  • Giải bài tập 2.22 trang 72 SGK Toán 12 tập 1 - Kết nối tri thức

    Trong không gian Oxyz, cho tam giác ABC có \(A\left( {1;0;1} \right),B\left( {0; - 3;1} \right)\) và \(C\left( {4; - 1;4} \right)\). a) Tìm tọa độ trọng tâm của tam giác ABC. b) Chứng minh rằng \(\widehat {BAC} = {90^0}\). c) Tính \(\widehat {ABC}\).

  • Giải bài tập 2.23 trang 72 SGK Toán 12 tập 1 - Kết nối tri thức

    Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dài là 8m, chiều rộng là 6m và chiều cao là 3m. Một chiếc đèn được treo tại chính giữa trần nhà của phòng học. Xét hệ trục tọa độ Oxyz có gốc O trùng với một góc phòng và mặt phẳng (Oxy) trùng với mặt sàn, đơn vị đo được lấy theo mét (H.2.51). Hãy tìm tọa độ của điểm treo đèn.

  • Giải bài tập 2.24 trang 72 SGK Toán 12 tập 1 - Kết nối tri thức

    Trong không gian, xét hệ tọa độ Oxyz có gốc O trùng với vị trí của một giàn khoan trên biển, mặt phẳng (Oxy) trùng với mặt biển (được coi là phẳng) với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời (H.2.52). Đơn vị đo trong không gian Oxyz lấy theo kilômét. Một chiếc ra đa đặt tại giàn khoan có phạm vi theo dõi là 30km. Hỏi ra đa có thể phát hiện được một chiếc tàu thám hiểm có tọa độ là (25; 15; -10) đối với hệ tọa độ nói trên hay không? Hãy giải thíc

  • Giải bài tập 2.20 trang 72 SGK Toán 12 tập 1 - Kết nối tri thức

    Trong không gian Oxyz, cho ba vectơ \(\overrightarrow a = \left( {3;1;2} \right)\), \(\overrightarrow b = \left( { - 3;0;4} \right)\) và \(\overrightarrow c = \left( {6; - 1;0} \right)\) a) Tìm tọa độ của các vectơ \(\overrightarrow a + \overrightarrow b + \overrightarrow c \) và \(2\overrightarrow a - 3\overrightarrow b - 5\overrightarrow c \). b) Tính các tích vô hướng \(\overrightarrow a .\left( { - \overrightarrow b } \right)\) và \(\left( {2\overrightarrow a } \right).\overrightar

  • Giải mục 3 trang 70, 71 SGK Toán 12 tập 1 - Kết nối tri thức

    Vận dụng tọa độ của vectơ trong một số bài toán có liên quan đến thực tiễn

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close