Giải bài tập 1.42 trang 44 SGK Toán 12 tập 1 - Kết nối tri thứcTìm các tiệm cận của mỗi đồ thị hàm số sau: a) \(y = \frac{{3x - 2}}{{x + 1}}\); b) \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\). Đề bài Tìm các tiệm cận của mỗi đồ thị hàm số sau: Phương pháp giải - Xem chi tiết Sử dụng kiến thức về khái niệm tiệm cận ngang của đồ thị hàm số để tìm tiệm cận ngang: Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\). Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty \) Sử dụng kiến thức về khái niệm đường tiệm cận xiên để tìm tiệm cận xiên: Đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) gọi là đường tiệm cận xiên (gọi tắt là tiệm cận xiên) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\). Lời giải chi tiết a) Ta có: \(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{3x - 2}}{{x + 1}} = - \infty \); \(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{3x - 2}}{{x + 1}} = + \infty \) Vậy tiệm cận đứng của đồ thị hàm số \(y = \frac{{3x - 2}}{{x + 1}}\) là đường thẳng \(x = - 1\) Ta có: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{3x - 2}}{{x + 1}} = 3\); \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{3x - 2}}{{x + 1}} = 3\) nên tiệm cận ngang của đồ thị hàm số \(y = \frac{{3x - 2}}{{x + 1}}\) đường thẳng \(y = 3\). b) Ta có: \(\mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ + }} \frac{{{x^2} + 2x - 1}}{{2x - 1}} = + \infty \); \(\mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ - }} \frac{{{x^2} + 2x - 1}}{{2x - 1}} = - \infty \) Vậy tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\) là đường thẳng \(x = \frac{1}{2}\). Ta có: \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}} = \frac{x}{2} + \frac{5}{4} + \frac{1}{{4\left( {2x - 1} \right)}}\) Do đó, \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {\frac{x}{2} + \frac{5}{4}} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{4\left( {2x - 1} \right)}} = 0\), \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {\frac{x}{2} + \frac{5}{4}} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{4\left( {2x - 1} \right)}} = 0\) Vậy tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\) là đường thẳng \(y = \frac{x}{2} + \frac{5}{4}\) Ta có: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 2x - 1}}{{2x - 1}} = - \infty \); \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + 2x - 1}}{{2x - 1}} = + \infty \) nên đồ thị hàm số \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\) không có tiệm cận ngang.
|