Giải bài tập 11 trang 38 SGK Toán 12 tập 1 - Chân trời sáng tạoCho hàm số (y = frac{1}{3}{x^3} - {x^2} + 4). a) Khảo sát và vẽ đồ thị của hàm số. b) Tính khoảng cách giữa hai điểm cực trị của đồ thị hàm số. Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài
Cho hàm số \(y = \frac{1}{3}{x^3} - {x^2} + 4\). a) Khảo sát và vẽ đồ thị của hàm số. b) Tính khoảng cách giữa hai điểm cực trị của đồ thị hàm số. Phương pháp giải - Xem chi tiết a) Bước 1. Tìm tập xác định của hàm số Bước 2. Xét sự biến thiên của hàm số − Tìm đạo hàm y', xét dấu y', xác định khoảng đơn điệu, cực trị (nếu có) của hàm số. − Tìm giới hạn tại vô cực, giới hạn vô cực của hàm số và các đường tiệm cận của đồ thị hàm số (nếu có). − Lập bảng biến thiên của hàm số. Bước 3. Vẽ đồ thị của hàm số − Xác định các điểm cực trị (nếu có), giao điểm của đồ thị với các trục toạ độ (nếu có và dễ tìm), ... − Vẽ các đường tiệm cận của đồ thị hàm số (nếu có). − Vẽ đồ thị hàm số. b) Quan sát đồ thị và tìm khoảng cách giữa 2 cực trị. Dùng định lí Pytago để tìm khoảng cách đó Lời giải chi tiết a) Tập xác định: \(D = \mathbb{R}\)
\(y' = {x^2} - 2x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\) Trên các khoảng (\( - \infty \); 0), (2; \( + \infty \)) thì y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó. Trên khoảng (0; 2) thì y' > 0 nên hàm số đồng biến trên khoảng đó.
Hàm số đạt cực đại tại x = 0 và \({y_{cd}} = 4\) Hàm số đạt cực tiểu tại x = 2 và \({y_{ct}} = \frac{8}{3}\)
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } (\frac{1}{3}{x^3} - {x^2} + 4) = - \infty \); \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } (\frac{1}{3}{x^3} - {x^2} + 4) = + \infty \)
Khi x = 0 thì y = 4 nên (0; 4) là giao điểm của đồ thị với trục Oy Ta có: \(y = 0 \Leftrightarrow \frac{1}{3}{x^3} - {x^2} + 4 = 0 \Leftrightarrow x = - 1,61\) Vậy đồ thị của hàm số giao với trục Ox tại điểm (-1,61; 0) b) Khoảng cách giữa 2 cực trị là \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{{(4 - 8/3)}^2} + {2^2}} \) = \(\frac{{2\sqrt {13} }}{3}\)
|