Giải bài 95 trang 41 sách bài tập toán 12 - Cánh diều

Tiệm cận xiên của đồ thị hàm số (y = frac{{3{{rm{x}}^2} + x - 2}}{{x - 2}}) là đường thẳng: A. (y = - 3{rm{x}} + 7). B. (y = 3{rm{x}} + 7). C. (y = 3{rm{x}} - 7). D. (y = - 3{rm{x}} - 7).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{3{{\rm{x}}^2} + x - 2}}{{x - 2}}\) là đường thẳng:

A. \(y =  - 3{\rm{x}} + 7\)  

B. \(y = 3{\rm{x}} + 7\)

C. \(y = 3{\rm{x}} - 7\)

D. \(y =  - 3{\rm{x}} - 7\)

Phương pháp giải - Xem chi tiết

‒ Tìm tiệm cận xiên \(y = ax + b\left( {a \ne 0} \right)\):

\(a = \mathop {\lim }\limits_{x \to  + \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - ax} \right]\) hoặc

\(a = \mathop {\lim }\limits_{x \to  - \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to  - \infty } \left[ {f\left( x \right) - ax} \right]\)

Lời giải chi tiết

Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ 2 \right\}\).

\(a = \mathop {\lim }\limits_{x \to  + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{3{{\rm{x}}^2} + x - 2}}{{x\left( {x - 2} \right)}} = 3\) và

\(b = \mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - 3x} \right] = \mathop {\lim }\limits_{x \to  + \infty } \left[ {\frac{{3{{\rm{x}}^2} + x - 2}}{{x - 2}} - 3x} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{{7{\rm{x}} - 2}}{{x - 2}} = 7\)

Vậy đường thẳng \(y = 3{\rm{x}} + 7\) là tiệm cận xiên của đồ thị hàm số đã cho.

Chọn B.

  • Giải bài 96 trang 41 sách bài tập toán 12 - Cánh diều

    Đường cong ở Hình 27 là đồ thị của hàm số: A. \(y = 2{{\rm{x}}^3} + 2\). B. \(y = {x^3} - {x^2} + 2\). C. \(y = - {x^3} + 3{\rm{x}} + 2\). D. \(y = {x^3} + x + 2\).

  • Giải bài 97 trang 41 sách bài tập toán 12 - Cánh diều

    Đường cong ở Hình 28 là đồ thị của hàm số: A. \(y = \frac{{ - 2{\rm{x}} + 1}}{{{\rm{x}} + 1}}\). B. \(y = \frac{{{\rm{x}} + 1}}{{ - x - 2}}\). C. \(y = \frac{{ - {\rm{x}} + 1}}{{x + 2}}\). D. \(y = \frac{{x - 2}}{{x + 2}}\).

  • Giải bài 98 trang 42 sách bài tập toán 12 - Cánh diều

    Đường cong ở Hình 29 là đồ thị của hàm số: A. (y = frac{{{x^2} + 2{rm{x}} - 2}}{{{rm{x}} - 1}}). B. (y = frac{{ - {x^2} + 2{rm{x}} + 2}}{{{rm{x}} + 1}}). C. (y = frac{{ - {x^2} + 2{rm{x}} - 2}}{{{rm{x}} - 1}}). D. (y = frac{{ - {x^2} + {rm{x}} - 2}}{{{rm{x}} - 1}}).

  • Giải bài 99 trang 42 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = x.{e^x}). a) (y' = {e^x} + x.{e^x}). b) (y' = 0) khi (x = - 1,x = 0). c) (y' > 0) khi (x in left( { - 1; + infty } right)) và (y' < 0) khi (x in left( { - infty ; - 1} right)). d) Hàm số đạt cực đại tại (x = - 1).

  • Giải bài 100 trang 42 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = {2^{{x^2} - 1}}). a) (y' = left( {{x^2} - 1} right){.2^{{x^2} - 2}}). b) (y' = 0) khi (x = - 1,x = 1). c) (yleft( { - 2} right) = 8,yleft( { - 1} right) = 1,yleft( 1 right) = 1). d) Trên đoạn (left[ { - 2;1} right]), hàm số đạt giá trị nhỏ nhất bằng 1, giá trị lớn nhất bằng 8.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close