Giải bài 98 trang 42 sách bài tập toán 12 - Cánh diều

Đường cong ở Hình 29 là đồ thị của hàm số: A. (y = frac{{{x^2} + 2{rm{x}} - 2}}{{{rm{x}} - 1}}). B. (y = frac{{ - {x^2} + 2{rm{x}} + 2}}{{{rm{x}} + 1}}). C. (y = frac{{ - {x^2} + 2{rm{x}} - 2}}{{{rm{x}} - 1}}). D. (y = frac{{ - {x^2} + {rm{x}} - 2}}{{{rm{x}} - 1}}).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Đường cong ở Hình 29 là đồ thị của hàm số:

A. \(y = \frac{{{x^2} + 2{\rm{x}} - 2}}{{{\rm{x}} - 1}}\).

B. \(y = \frac{{ - {x^2} + 2{\rm{x}} + 2}}{{{\rm{x}} + 1}}\).

C. \(y = \frac{{ - {x^2} + 2{\rm{x}} - 2}}{{{\rm{x}} - 1}}\).

D. \(y = \frac{{ - {x^2} + {\rm{x}} - 2}}{{{\rm{x}} - 1}}\).

Phương pháp giải - Xem chi tiết

Xét các đường tiệm cận của đồ thị hàm số.

Lời giải chi tiết

Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 1\). Vậy loại B.

Đồ thị hàm số có tiệm cận xiên là đường thẳng đi qua hai điểm \(\left( {1;0} \right)\) và \(\left( {0;1} \right)\). Vậy \(y =  - x + 1\) là tiệm cận xiên của đồ thị hàm số. Vậy loại B, D.

Chọn C.

  • Giải bài 99 trang 42 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = x.{e^x}). a) (y' = {e^x} + x.{e^x}). b) (y' = 0) khi (x = - 1,x = 0). c) (y' > 0) khi (x in left( { - 1; + infty } right)) và (y' < 0) khi (x in left( { - infty ; - 1} right)). d) Hàm số đạt cực đại tại (x = - 1).

  • Giải bài 100 trang 42 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = {2^{{x^2} - 1}}). a) (y' = left( {{x^2} - 1} right){.2^{{x^2} - 2}}). b) (y' = 0) khi (x = - 1,x = 1). c) (yleft( { - 2} right) = 8,yleft( { - 1} right) = 1,yleft( 1 right) = 1). d) Trên đoạn (left[ { - 2;1} right]), hàm số đạt giá trị nhỏ nhất bằng 1, giá trị lớn nhất bằng 8.

  • Giải bài 101 trang 42 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = frac{{3{rm{x}} - 2}}{{1 - x}}). a) Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = 1). b) Đồ thị hàm số có tiệm cận ngang là đường thẳng (y = 3). c) Điểm (M) nằm trên đồ thị hàm số có hoành độ ({x_0} ne 1) thì tung độ là ({y_0} = - 3 - frac{1}{{{x_0} - 1}}). d) Tích khoảng cách từ điểm (M) bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1.

  • Giải bài 102 trang 43 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số bậc ba (y = fleft( x right) = a{x^3} + b{x^2} + cx + d) có đồ thị là đường cong như Hình 30. a) Phương trình (fleft( x right) = 4) có hai nghiệm (x = - 1,x = 2). b) Phương trình (fleft( x right) = - 1) có hai nghiệm. c) Phương trình (fleft( x right) = 2) có ba nghiệm. d) Phương trình (fleft( {fleft( x right)} right) = 4) có sáu nghiệm.

  • Giải bài 103 trang 43 sách bài tập toán 12 - Cánh diều

    Cho hàm số \(y = f\left( x \right)\) xác định trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right)\), đồ thị hàm số là đường cong và có bốn đường tiệm cận như Hình 31. Căn cứ vào đồ thị hàm số: a) Viết phương trình đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số. b) Lập bảng biến thiên của hàm số.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close