Giải bài 96 trang 41 sách bài tập toán 12 - Cánh diều

Đường cong ở Hình 27 là đồ thị của hàm số: A. \(y = 2{{\rm{x}}^3} + 2\). B. \(y = {x^3} - {x^2} + 2\). C. \(y = - {x^3} + 3{\rm{x}} + 2\). D. \(y = {x^3} + x + 2\).

Đề bài

Đường cong ở Hình 27 là đồ thị của hàm số:

A. \(y = 2{{\rm{x}}^3} + 2\).

B. \(y = {x^3} - {x^2} + 2\).

C. \(y =  - {x^3} + 3{\rm{x}} + 2\).

D. \(y = {x^3} + x + 2\).

Phương pháp giải - Xem chi tiết

‒ Dựa vào hình dáng của đồ thị hàm số.

‒ Xét các điểm trên đồ thị hàm số.

Lời giải chi tiết

Dựa vào hình dáng của đồ thị hàm số ta có: \(a > 0\) và \(y' > 0\) nên loại A, C.

Đồ thị hàm số đi qua điểm \(\left( { - 1;0} \right)\) nên loại B.

Chọn D.

  • Giải bài 97 trang 41 sách bài tập toán 12 - Cánh diều

    Đường cong ở Hình 28 là đồ thị của hàm số: A. \(y = \frac{{ - 2{\rm{x}} + 1}}{{{\rm{x}} + 1}}\). B. \(y = \frac{{{\rm{x}} + 1}}{{ - x - 2}}\). C. \(y = \frac{{ - {\rm{x}} + 1}}{{x + 2}}\). D. \(y = \frac{{x - 2}}{{x + 2}}\).

  • Giải bài 98 trang 42 sách bài tập toán 12 - Cánh diều

    Đường cong ở Hình 29 là đồ thị của hàm số: A. (y = frac{{{x^2} + 2{rm{x}} - 2}}{{{rm{x}} - 1}}). B. (y = frac{{ - {x^2} + 2{rm{x}} + 2}}{{{rm{x}} + 1}}). C. (y = frac{{ - {x^2} + 2{rm{x}} - 2}}{{{rm{x}} - 1}}). D. (y = frac{{ - {x^2} + {rm{x}} - 2}}{{{rm{x}} - 1}}).

  • Giải bài 99 trang 42 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = x.{e^x}). a) (y' = {e^x} + x.{e^x}). b) (y' = 0) khi (x = - 1,x = 0). c) (y' > 0) khi (x in left( { - 1; + infty } right)) và (y' < 0) khi (x in left( { - infty ; - 1} right)). d) Hàm số đạt cực đại tại (x = - 1).

  • Giải bài 100 trang 42 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = {2^{{x^2} - 1}}). a) (y' = left( {{x^2} - 1} right){.2^{{x^2} - 2}}). b) (y' = 0) khi (x = - 1,x = 1). c) (yleft( { - 2} right) = 8,yleft( { - 1} right) = 1,yleft( 1 right) = 1). d) Trên đoạn (left[ { - 2;1} right]), hàm số đạt giá trị nhỏ nhất bằng 1, giá trị lớn nhất bằng 8.

  • Giải bài 101 trang 42 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = frac{{3{rm{x}} - 2}}{{1 - x}}). a) Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = 1). b) Đồ thị hàm số có tiệm cận ngang là đường thẳng (y = 3). c) Điểm (M) nằm trên đồ thị hàm số có hoành độ ({x_0} ne 1) thì tung độ là ({y_0} = - 3 - frac{1}{{{x_0} - 1}}). d) Tích khoảng cách từ điểm (M) bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close