Bài 72 trang 61 SBT toán 8 tập 2Giải bài 72 trang 61 sách bài tập toán 8. Cho a > b, chứng tỏ : a) 3a + 5 > 3b + 2 ; b) 2 - 4a < 3 - 4b.
Lựa chọn câu để xem lời giải nhanh hơn
Cho a>b, chứng tỏ LG a 3a+5>3b+2 ; Phương pháp giải: Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương và số âm, liên hệ giữa thứ tự và phép cộng; tính chất bắc cầu. Lời giải chi tiết: Ta có: a>b⇒3a>3b (Nhân số 3 vào hai vế của bất đẳng thức a>b) ⇒3a+5>3b+5 (Cộng số 5 vào hai vế của bất đẳng thức 3a>3b)) (1) Từ 5>2⇒3b+5>3b+2 (2) Theo tính chất bắc cầu, từ (1) và (2) suy ra: 3a+5>3b+2. LG b 2−4a<3−4b. Phương pháp giải: Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương và số âm, liên hệ giữa thứ tự và phép cộng; tính chất bắc cầu. Lời giải chi tiết: Ta có: a>b⇒−4a<−4b (Nhân số −4 vào hai vế của bất đẳng thức a>b) ⇒3−4a<3−4b (Cộng số 3 vào hai vế của bất đẳng thức −4a<−4b)) (3) Từ 2<3⇒2−4a<3−4a (4) Theo tính chất bắc cầu, từ (3) và (4) suy ra: 2–4a<3–4b. HocTot.Nam.Name.Vn
|