Giải bài 6.11 trang 7 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Quy đồng mẫu thức các phân thức sau:

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Quy đồng mẫu thức các phân thức sau:

a) \(\frac{{25}}{{14{x^2}y}}\) và \(\frac{{14}}{{21x{y^5}}}\);

b) \(\frac{{4x - 4}}{{2x\left( {x + 3} \right)}}\) và \(\frac{{x - 3}}{{3x\left( {x + 1} \right)}}\)

Phương pháp giải - Xem chi tiết

- Sử dụng kiến thức quy đồng mẫu thức nhiều phân thức để quy đồng mẫu thức các phân thức:

+ Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.

+ Tìm nhân tử phụ của mỗi mẫu thức bằng cách chia MTC cho mẫu thức đó

+ Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải chi tiết

a) MTC =\(42{x^2}{y^5}\)

Do đó, \(\frac{{25}}{{14{x^2}y}} = \frac{{25.3.{y^4}}}{{42{x^2}{y^5}}} = \frac{{75{y^4}}}{{42{x^2}{y^5}}}\) và \(\frac{{14}}{{21x{y^5}}} = \frac{{14.2.x}}{{42{x^2}{y^5}}} = \frac{{28x}}{{42{x^2}{y^5}}}\)

b) Ta có: \(\frac{{4x - 4}}{{2x\left( {x + 3} \right)}} = \frac{{2\left( {2x - 2} \right)}}{{2x\left( {x + 3} \right)}} = \frac{{2\left( {x - 1} \right)}}{{x\left( {x + 3} \right)}}\)

MTC=\(3x\left( {x + 3} \right)\left( {x + 1} \right)\)

\(\frac{{2\left( {x - 1} \right)}}{{x\left( {x + 3} \right)}} = \frac{{2.3\left( {x - 1} \right)\left( {x + 1} \right)}}{{3x\left( {x + 3} \right)\left( {x + 1} \right)}} = \frac{{6\left( {{x^2} - 1} \right)}}{{3x\left( {x + 3} \right)\left( {x + 1} \right)}}\)

và \(\frac{{x - 3}}{{3x\left( {x + 1} \right)}} = \frac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{3x\left( {x + 3} \right)\left( {x + 1} \right)}} = \frac{{{x^2} - 9}}{{3x\left( {x + 3} \right)\left( {x + 1} \right)}}\)

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close