Giải bài 6 trang 18 sách bài tập toán 8 - Chân trời sáng tạo tập 2

Cho hàm số \(y = \frac{{ - x + 9}}{9}\). Phát biểu nào sau đây là đúng về đồ thị của hàm số đã cho?

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho hàm số \(y = \frac{{ - x + 9}}{9}\). Phát biểu nào sau đây là đúng về đồ thị của hàm số đã cho?

A. Là một đường thẳng số hệ số b là 9.

B. Không phải là một đường thẳng.

C. Cắt trục hoành tại điểm có hoành độ là 9.

D. Đi qua điểm (19; 1).

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức hàm số bậc nhất để tìm câu đúng: Hàm số bậc nhất là hàm số được cho bởi công thức \(y = ax + b\) với a, b là các số cho trước và \(a \ne 0\).

+ Thay giá trị của hoành độ điểm đó vào hàm số để tìm tung độ:

  • Nếu tung độ tìm được bằng tung độ của điểm đó thì điểm đó thuộc đồ thị hàm số.
  • Nếu tung độ tìm được khác tung độ của điểm đó thì điểm đó không thuộc đồ thị hàm số.

+ Điểm thuộc trục hoành có tung độ bằng 0.

Lời giải chi tiết

Ta có: \(y = \frac{{ - x + 9}}{9} = \frac{{ - x}}{9} + 1\) nên đồ thị hàm số \(y = \frac{{ - x + 9}}{9}\) là một đường thẳng có hệ số b bằng 1.

Với \(x = 19\) thay vào hàm số ta có: \(y = \frac{{ - 19 + 9}}{9} = \frac{{ - 10}}{9} \ne 1\) nên đường thẳng \(y = \frac{{ - x + 9}}{9}\) không đi qua điểm (19; 1).

Với \(x = 9\) thì \(y = \frac{{ - 9 + 9}}{0} = 0\). Do đó, đồ thị của hàm số \(y = \frac{{ - x + 9}}{9}\) cắt trục hoành tại điểm có hoành độ là 9.

Chọn C

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close