Giải bài 54 trang 100 SBT toán 10 - Cánh diềuCho hình bình hành ABCD. Lấy các điểm M, N, P thoả mãn \(\overrightarrow {AM} = \frac{1}{2}\overrightarrow {AB} ,\overrightarrow {AN} = \frac{1}{5}\overrightarrow {AC} ,\overrightarrow {AP} = \frac{1}{3}\overrightarrow {AD} \). Đặt \(\overrightarrow {AB} = \overrightarrow a ,\overrightarrow {AD} = \overrightarrow b \). Biểu thị các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {NP} \) theo các vectơ \(\overrightarrow a ,\overrightarrow b \) và chứng minh ba điểm M, N, Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Đề bài Cho hình bình hành ABCD. Lấy các điểm M, N, P thoả mãn \(\overrightarrow {AM} = \frac{1}{2}\overrightarrow {AB} ,\overrightarrow {AN} = \frac{1}{5}\overrightarrow {AC} ,\overrightarrow {AP} = \frac{1}{3}\overrightarrow {AD} \). Đặt \(\overrightarrow {AB} = \overrightarrow a ,\overrightarrow {AD} = \overrightarrow b \). Biểu thị các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {NP} \) theo các vectơ \(\overrightarrow a ,\overrightarrow b \) và chứng minh ba điểm M, N, P thẳng hàng. Phương pháp giải - Xem chi tiết Bước 1: Xác định vị trí các điểm M, N, P trên các cạnh AB, AC, AD Bước 2: Sử dụng các quy tắc để biểu diễn các vectơ theo \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \) Bước 3: Sử dụng điều kiện \(\overrightarrow {MN} = k\overrightarrow {NP} \) chứng minh M, N, P thẳng hàng. Lời giải chi tiết Theo giả thiết, M là trung điểm AB, N nằm giữa A và C, P nằm giữa A và D a) Ta có: + \(\overrightarrow {AN} = \frac{1}{5}\overrightarrow {AC} \). Theo quy tắc hình bình hành, \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) \( \Rightarrow \overrightarrow {AN} = \frac{1}{5}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) = \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right)\) + \(\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} \)mà \(\overrightarrow {AN} = \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right)\), \(\overrightarrow {AM} = \frac{1}{2}\overrightarrow {AB} = \frac{1}{2}\overrightarrow a \) nên \(\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right) - \frac{1}{2}\overrightarrow a = - \frac{3}{{10}}\overrightarrow a + \frac{1}{5}\overrightarrow b \) + \(\overrightarrow {NP} = \overrightarrow {AP} - \overrightarrow {AN} \) mà \(\overrightarrow {AN} = \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right)\), \(\overrightarrow {AP} = \frac{1}{3}\overrightarrow {AD} = \frac{1}{3}\overrightarrow b \) nên \(\overrightarrow {NP} = \overrightarrow {AP} - \overrightarrow {AN} = \frac{1}{3}\overrightarrow b - \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right) = - \frac{1}{5}\overrightarrow a + \frac{2}{{15}}\overrightarrow b \) Vậy \(\overrightarrow {AN} = \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right)\); \(\overrightarrow {MN} = - \frac{3}{{10}}\overrightarrow a + \frac{1}{5}\overrightarrow b \); \(\overrightarrow {NP} = - \frac{1}{5}\overrightarrow a + \frac{2}{{15}}\overrightarrow b \) b) Theo a, \(\overrightarrow {MN} = - \frac{3}{{10}}\overrightarrow a + \frac{1}{5}\overrightarrow b \); \(\overrightarrow {NP} = - \frac{1}{5}\overrightarrow a + \frac{2}{{15}}\overrightarrow b \) \( \Rightarrow \overrightarrow {MN} = - \frac{3}{{10}}\overrightarrow a + \frac{1}{5}\overrightarrow b = \frac{3}{2}\left( { - \frac{1}{5}\overrightarrow a + \frac{2}{{15}}\overrightarrow b } \right) = \frac{3}{2}\overrightarrow {NP} \) \( \Rightarrow \overrightarrow {MN} \) và \(\overrightarrow {NP} \) cùng phương. Vậy 3 điểm M, N, P thẳng hàng.
|