Giải bài 5 trang 107 sách bài tập toán 9 - Cánh diều tập 2

Cho ngũ giác ABCDE. Chứng minh: AC + AD + BD + BE + EC > AB + BC + CD + DE + EA.

Đề bài

Cho ngũ giác ABCDE. Chứng minh:

AC + AD + BD + BE + EC > AB + BC + CD + DE + EA.

Phương pháp giải - Xem chi tiết

Áp dụng bất đẳng thức trong tam giác là một định lý phát biểu rằng trong một tam giác, chiều dài của một cạnh phải nhỏ hơn tổng, nhưng lớn hơn hiệu của hai cạnh còn lại.

Lời giải chi tiết

AF + FE > AE (trong tam giác AEF);

AJ + JB > AB (trong tam giác ABJ);

BI + IC > BC (trong tam giác BCI);

CH + HD > CD (trong tam giác CDH);

GE + GD > ED (trong tam giác GDE).

Do đó, ta có:

AF + FE + AJ + JB + BI + IC + CH + HD + GE + GD > AE + AB + BC + CD + ED. (1)

Mặt khác:

(AF + GD) + (JB + FE) + (AJ + IC) + (BI + HD)  + (EG + CH) < AD + BE + AC + BD + EC. 

Hay AF + FE + AJ + JB + BI + IC + CH + HD + GE + GD < AB + BC + CD + DE + EA. (2)

Từ (1) và (2) suy ra:

AC + AD + BD + BE + EC > AB + BC + CD + DE + EA.

  • Giải bài 6 trang 107 sách bài tập toán 9 - Cánh diều tập 2

    Cho ngũ giác đều ABCDE và một điểm M nằm trong ngũ giác. Gọi A’, B’, C’, D’, E’ lần lượt là các điểm nằm trên các đoạn thẳng MA, MB, MC, MD, ME sao cho (frac{{MA'}}{{MA}} = frac{{MB'}}{{MB}} = frac{1}{3},frac{{CC'}}{{MC}} = frac{{DD'}}{{MD}} = frac{2}{3},frac{{ME'}}{{E'E}} = frac{1}{2}). Chứng minh ngũ giác A’B’C’D’E’ là ngũ giác đều.

  • Giải bài 7 trang 107 sách bài tập toán 9 - Cánh diều tập 2

    Cho ngũ giác đều ABCDE, đoạn BE cắt các đoạn AC và AD lần lượt tại M và N. Chứng minh rằng: a) Các tam giác AEN và CMB là các tam giác cân; b) AN là phân giác của góc EAM; c) AB.BC = BM.AC.

  • Giải bài 8 trang 107 sách bài tập toán 9 - Cánh diều tập 2

    Ở Hình 9 biết ABCDEF là lục giác đều, chứng minh rằng lục giác MNPQRS cũng là lục giác đều.

  • Giải bài 9 trang 107 sách bài tập toán 9 - Cánh diều tập 2

    Người ta chia đường tròn (O; R) thành 6 cung bằng nhau như sau: – Trên đường tròn (O; R), lấy điểm A tuỳ ý; – Vẽ một phần đường tròn (A; R) cắt (O; R) tại B và C; – Vẽ một phần đường tròn (C; R) cắt (O; R) tại E (khác A); – Vẽ một phần đường tròn (E; R) cắt (O; R) tại F (khác C); – Vẽ một phần đường tròn (F; R) cắt (O; R) tại D (khác E). Nối A với B, B với D, D với F, F với E, E với C, C với A, ta được lục giác ABDFEC. Chứng minh: a) Lục giác ABDFEC là lục giác đều; b) AF, BE, CD l

  • Giải bài 10 trang 108 sách bài tập toán 9 - Cánh diều tập 2

    Cho tam giác đều ABC cạnh a. Vẽ về phía ngoài tam giác ABC các hình chữ nhật ABEF, BCIJ và CAGH sao cho AF = BJ = CH = x. Tìm hệ thức liên hệ giữa a2 và x2 để hình lục giác EFGHIJ là lục giác đều.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close