Giải bài 45 trang 92 SBT toán 10 - Cánh diềuCho hai tam giác ABC và A’B’C’ có cùng trọng tâm là G. Chứng minh \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = \overrightarrow 0 \) Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Đề bài Cho hai tam giác ABC và A’B’C’ có cùng trọng tâm là G. Chứng minh \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = \overrightarrow 0 \) Phương pháp giải - Xem chi tiết Sử dụng tính chất trọng tâm tam giác, quy tắc 3 điểm (lấy G là điểm trung gian) để biến đổi \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} \) rồi kết luận Lời giải chi tiết Do G là trọng tâm tam giác ABC và tam giác A’B’C’ nên: \(\left\{ \begin{array}{l}\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \\\overrightarrow {GA'} + \overrightarrow {GB'} + \overrightarrow {GC'} = \overrightarrow 0 \end{array} \right.\) Ta có: \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = \overrightarrow {GA'} - \overrightarrow {GA} + \overrightarrow {GB'} - \overrightarrow {GB} + \overrightarrow {GC'} - \overrightarrow {GC} \) \( = \left( {\overrightarrow {GA'} + \overrightarrow {GB'} + \overrightarrow {GC'} } \right) - \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right)\)\( = \overrightarrow 0 - \overrightarrow 0 = \overrightarrow 0 \) (ĐPCM)
|