Giải bài 4.37 trang 66 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngTrong mặt phẳng tọa độ Oxy cho ba điểm A( - 3;2),B(1;5) và C(3; - 1). Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Đề bài Trong mặt phẳng tọa độ \(Oxy\) cho ba điểm \(A( - 3;2),\,\,B(1;5)\) và \(C(3; - 1).\) a) Chứng minh rằng \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác. Tìm tọa độ trọng tâm \(G\) của tam giác ấy. b) Tìm tọa độ trực tâm \(H\) của tam giác \(ABC.\) c) Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\) Tìm tọa độ của \(I.\) Lời giải chi tiết a) Ta có: \(\overrightarrow {AB} = (4;3)\) và \(\overrightarrow {AC} = (6; - 3)\) \( \Rightarrow \) \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương \( \Rightarrow \) ba điểm \(A,\,\,B,\,\,C\) không thẳng hàng \( \Rightarrow \) ba điểm \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác. Gọi \(G\) là trọng tâm của \(\Delta ABC\) \( \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = \frac{{ - 3 + 1 + 3}}{3} = \frac{1}{3}}\\{y = \frac{{2 + 5 - 1}}{3} = 2}\end{array}} \right.\,\, \Leftrightarrow \,\,G\left( {\frac{1}{3};2} \right)\) b) Gọi \(H(x;y)\) là trực tâm của \(\Delta ABC\) Ta có: \(\overrightarrow {BH} = (x - 1;y - 5)\) và \(\overrightarrow {CH} = (x - 3;y + 1)\) Do \(BH \bot AC\) và \(CH \bot AB\) Nên \(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {BH} .\overrightarrow {AC} = 0}\\{\overrightarrow {CH} .\overrightarrow {AB} = 0}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{6\left( {x - 1} \right) - 3\left( {y - 5} \right) = 0}\\{4\left( {x - 3} \right) + 3\left( {y + 1} \right) = 0}\end{array}} \right.\) \( \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{2x - y = - 3}\\{4x + 3y = 9}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 3}\end{array}} \right.\) Vậy \(H(0;3).\) c) Gọi \(I(x;y)\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\) Ta có: \(\overrightarrow {IH} = 3\overrightarrow {IG} \) \( \Leftrightarrow \) \(( - x;3 - y) = 3\left( {\frac{1}{3} - x;2 - y} \right) = \left( {1 - 3x;6 - 3y} \right)\) \( \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{ - x = 1 - 3x}\\{3 - y = 6 - 3y}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = \frac{1}{2}}\\{y = \frac{3}{2}}\end{array}} \right.\) Vậy \(I\left( {\frac{1}{2};\frac{3}{2}} \right)\)
|