Bài 37 trang 92 SBT toán 8 tập 2Giải bài 37 trang 92 sách bài tập toán 8. Cho tam giác ABC có góc A = 60^o , AB = 6cm, AC = 9cm ... Đề bài Cho tam giác \(ABC\) có \(\widehat A = 60^\circ \), \(AB = 6cm, AC = 9cm\) a) Dựng tam giác đồng dạng với tam giác \(ABC\) theo tỉ số đồng dạng \(\displaystyle k = {1 \over 3}\) b) Hãy nêu một vài cách dựng khác và vẽ hình trong từng trường hợp cụ thể. Phương pháp giải - Xem chi tiết Nếu hai cạnh tam giác này tỉ lệ với hai cạnh của tam giác kia và góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đồng dạng. Lời giải chi tiết a) Cách dựng: - Dựng \(\widehat {xAy} = {60^o}\) - Trên tia \(Ax\) lấy hai điểm \(B\) và \(B'\) sao cho \(AB=6\,cm\) và \(AB’ = 2cm.\) - Trên tia \(Ay\) lấy điểm \(C\) và \(C'\) sao cho \(AC=9cm\) và \(AC’ = 3cm.\) - Nối \(B\) với \(C\), ta được \(\Delta ABC\) thỏa mãn yêu cầu bài toán. - Nối \(B’\) với \(C’\), khi đó \(\Delta AB’C’\) là tam giác cần dựng. Chứng minh: Theo cách dựng, ta có: \(\displaystyle{{AB'} \over {AB}} = {2 \over 6} = {1 \over 3}\) \(\displaystyle{{AC'} \over {AC}} = {3 \over 9} = {1 \over 3}\) \( \Rightarrow\displaystyle {{AB'} \over {AB}} = {{AC'} \over {AC}} = {1 \over 3} \) Xét \(∆ AB’C’\) và \(∆ ABC\) có: \(\displaystyle {{AB'} \over {AB}} = {{AC'} \over {AC}} = {1 \over 3} \) \(\widehat A\) chung \( \Rightarrow ∆ AB’C’\) đồng dạng \(∆ ABC\) (c.g.c) b) Cách dựng: - Dựng \(\widehat {xAy} = {60^o}\) - Trên tia \(Ax\) lấy hai điểm \(B\) sao cho \(AB=6\,cm\). - Trên tia \(Ay\) lấy điểm \(C\) sao cho \(AC=9cm\). - Nối \(B\) với \(C\), ta được \(\Delta ABC\) thỏa mãn yêu cầu bài toán. - Trên tia đối của tia \(Ax\) dựng điểm \(B’\) sao cho \(AB’ = 2cm.\) - Trên tia đối của tia \(Ay\) dựng điểm \(C’\) sao cho \(AC’ = 3cm.\) - Nối \(B’\) với \(C’\), khi đó \(\Delta AB’C’\) là tam giác cần dựng. Chứng minh: Theo cách dựng, ta có: \(\displaystyle{{AB'} \over {AB}} = {2 \over 6} = {1 \over 3}\) \(\displaystyle{{AC'} \over {AC}} = {3 \over 9} = {1 \over 3}\) \( \Rightarrow\displaystyle {{AB'} \over {AB}} = {{AC'} \over {AC}} = {1 \over 3} \) Xét \(∆ AB’C’\) và \(∆ ABC\) có: \(\displaystyle {{AB'} \over {AB}} = {{AC'} \over {AC}} = {1 \over 3} \) \(\widehat {B'AC'}=\widehat {BAC} \) (đối đỉnh) \( \Rightarrow ∆ AB’C’\) đồng dạng \(∆ ABC\) (c.g.c) HocTot.Nam.Name.Vn
|