Bài 3.6 trang 130 SBT hình học 11

Giải bài 3.6 trang 130 sách bài tập hình học 11. Chứng minh rằng tứ giác ABCD là hình bình hành...

Đề bài

Trên mặt phẳng \(\displaystyle \left( \alpha  \right)\) cho hình bình hành \(\displaystyle {A_1}{B_1}{C_1}{D_1}\). Về một phía đối với mặt phẳng \(\displaystyle \left( \alpha  \right)\) ta dựng hình bình hành \(\displaystyle {A_2}{B_2}{C_2}{D_2}\). Trên các đoạn \(\displaystyle {A_1}{A_2},{B_1}{B_2},{C_1}{C_2},{D_1}{D_2}\) ta lần lượt lấy các điểm \(A, B, C, D\) sao cho

\(\displaystyle {{A{A_1}} \over {A{A_2}}} = {{B{B_1}} \over {B{B_2}}} = {{C{C_1}} \over {C{C_2}}} = {{D{D_1}} \over {D{D_2}}} = 3\) 

Chứng minh rằng tứ giác \(\displaystyle ABCD\) là hình bình hành.

Phương pháp giải - Xem chi tiết

- Lấy điểm \(O\) cố định.

- Điều kiện cần và đủ để \(ABCD\) là hình bình hành là \(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow {OB}  + \overrightarrow {O{\rm{D}}}\)

(theo bài tập 3.2)

Lời giải chi tiết

Lấy điểm \(O\) cố định rồi đặt \(\overrightarrow {O{A_1}}  = \overrightarrow {{a_1}} ,\,\,\overrightarrow {O{B_1}}  = \overrightarrow {{b_1}} ,\,\,\overrightarrow {O{C_1}}  = \overrightarrow {{c_1}} ,\,\,\overrightarrow {O{D_1}}  = \overrightarrow {{d_1}} \). Điều kiện cần và đủ để tứ giác \({A_1}{B_1}{C_1}{D_1}\) là hình bình hành là \(\overrightarrow {{a_1}}  + \overrightarrow {{c_1}}  = \overrightarrow {{b_1}}  + \overrightarrow {{d_1}} \) ( theo bài tập 3.2)   (1)

Đặt \(\overrightarrow {O{A_2}}  = \overrightarrow {{a_2}} ,\overrightarrow {O{B_2}}  = \overrightarrow {{b_2}},\) \(\overrightarrow {O{C_2}}  = \overrightarrow {{c_2}} ,\overrightarrow {O{D_2}}  = \overrightarrow {{d_2}} \).

Điều kiện cần và đủ để tứ giác \({A_2}{B_2}{C_2}{D_2}\) là hình bình hành là \(\overrightarrow {{a_2}}  + \overrightarrow {{c_2}}  = \overrightarrow {{b_2}}  + \overrightarrow {{d_2}} \)     (2)

Đặt \(\overrightarrow {OA}  = \overrightarrow a ,\,\,\overrightarrow {OB}  = \overrightarrow b ,\,\,\overrightarrow {OC}  = \overrightarrow c ,\,\,\overrightarrow {OD}  = \overrightarrow d \).

Ta có \({{A{A_1}} \over {A{A_2}}} = 3 \Rightarrow \overrightarrow {A{A_1}}  =  - 3\overrightarrow {A{A_2}} \)

\(\eqalign{
& \Leftrightarrow \overrightarrow {O{A_1}} - \overrightarrow {OA} = 3\left( {\overrightarrow {O{A_2}} - \overrightarrow {OA} } \right) \cr 
& \Leftrightarrow \overrightarrow {{a_1}} - \overrightarrow a = - 3\left( {\overrightarrow {{a_2}} - \overrightarrow a } \right) \cr 
& \Leftrightarrow \overrightarrow a = {1 \over 4}\left( {\overrightarrow {{a_1}} + 3\overrightarrow {{a_2}} } \right) \cr} \)

Tương tự: \(\overrightarrow b  = {1 \over 4}\left( {\overrightarrow {{b_1}}  + 3\overrightarrow {{b_2}} } \right)\),

\(\overrightarrow c  = {1 \over 4}\left( {\overrightarrow {{c_1}}  + 3\overrightarrow {{c_2}} } \right),\overrightarrow {\,\,d}  = {1 \over 4}\left( {\overrightarrow {{d_1}}  + 3\overrightarrow {{d_2}} } \right)\).

Ta có: \(\overrightarrow a  + \overrightarrow c  = {1 \over 4}\left( {\overrightarrow {{a_1}}  + 3\overrightarrow {{a_2}} } \right) + {1 \over 4}\left( {\overrightarrow {{c_1}}  + 3\overrightarrow {{c_2}} } \right)\)

\(= {1 \over 4}\left( {\overrightarrow {{a_1}}  + \overrightarrow {{c_1}} } \right) + {3 \over 4}\left( {\overrightarrow {{a_2}}  + \overrightarrow {{c_2}} } \right)\)

Và:

\(\eqalign{
& \overrightarrow b + \overrightarrow d = {1 \over 4}\left( {\overrightarrow {{b_1}} + 3\overrightarrow {{b_2}} } \right) + {1 \over 4}\left( {\overrightarrow {{d_1}} + 3\overrightarrow {{d_2}} } \right) \cr 
& = {1 \over 4}\left( {\overrightarrow {{b_1}} + \overrightarrow {{d_1}} } \right) + {3 \over 4}\left( {\overrightarrow {{b_2}} + \overrightarrow {{d_2}} } \right) \cr}\)

Từ (1) và (2) ta có \(\overrightarrow {{a_1}}  + \overrightarrow {{c_1}}  = \overrightarrow {{b_1}}  + \overrightarrow {{d_1}} \) và \(\overrightarrow {{a_2}}  + \overrightarrow {{c_2}}  = \overrightarrow {{b_2}}  + \overrightarrow {{d_2}} \) nên suy ra :

\(\overrightarrow a  + \overrightarrow b  + \overrightarrow c  + \overrightarrow d  \Leftrightarrow \overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow {OB}  + \overrightarrow {O{\rm{D}}} \)

⟺ tứ giác \(ABCD\) là hình bình hành.

 HocTot.Nam.Name.Vn

  • Bài 3.7 trang 130 SBT hình học 11

    Giải bài 3.7 trang 130 sách bài tập hình học 11. Cho hình hộp ABCD.A’B’C’D’ có P và R lần lượt là trung điểm các cạnh AB và A’D’. Gọi P’, Q, Q’, R' lần lượt là tâm đối xứng của các hình bình hành ABCD, CDD’C’, A’B’C’D’, ADD’A’

  • Bài 3.5 trang 130 SBT hình học 11

    Giải bài 3.5 trang 130 sách bài tập hình học 11. Trong không gian cho hai hình bình hành ABCD và A’B’C’D’ chỉ có chung nhau một điểm A...

  • Bài 3.4 trang 130 SBT hình học 11

    Giải bài 3.4 trang 130 sách bài tập hình học 11. Cho hình lăng trụ tam giác ABC.A’B’C’ có độ dài cạnh bên bằng a...

  • Bài 3.3 trang 129 SBT hình học 11

    Giải bài 3.3 trang 129 sách bài tập hình học 11. Cho tứ diện ABCD. Gọi P và Q lần lượt là trung điểm của các cạnh AB và CD. Trên các cạnh AC và BD lần lượt ta lấy các điểm M, N sao cho...

  • Bài 3.2 trang 129 SBT hình học 11

    Giải bài 3.2 trang 129 sách bài tập hình học 11. Trong không gian cho điểm O và bốn điểm A, B, C, D phân biệt và không thẳng hàng. Chứng minh rằng điều kiện cần và đủ để bốn điểm A, B, C, D tạo thành một hình bình hành là:

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close