Bài 3.4 trang 130 SBT hình học 11

Giải bài 3.4 trang 130 sách bài tập hình học 11. Cho hình lăng trụ tam giác ABC.A’B’C’ có độ dài cạnh bên bằng a...

Đề bài

Cho hình lăng trụ tam giác \(ABC.A’B’C’\) có độ dài cạnh bên bằng \(a\). Trên các cạnh bên \(AA’,BB’,CC’\) ta lấy tương ứng các điểm \(M, N, P\) sao cho \(AM + BN + CP = a\)

Chứng minh rằng mặt phẳng \((MNP)\) luôn luôn đi qua một điểm cố định.

Phương pháp giải - Xem chi tiết

Gọi \(G'\) là trọng tâm tam giác \(MNP\) và chúng minh \(G'\) cố định.

Lời giải chi tiết

Gọi G và  G’ lần lượt là trọng tâm của tam giác ABC và tam giác MNP . Ta có:

\(\displaystyle \eqalign{
& \,\,\,\,\overrightarrow {GG'} = \overrightarrow {GA} + \overrightarrow {AM} + \overrightarrow {MG'} \cr 
& + \,\,\overrightarrow {GG'} = \overrightarrow {GB} + \overrightarrow {BN} + \overrightarrow {NG'} \cr 
& \,\,\,\,\,\overrightarrow {GG'} = \overrightarrow {GC} + \overrightarrow {CP} + \overrightarrow {PG'} \cr} \)

Cộng từng vế với vế ta có:

\(\displaystyle 3\overrightarrow {GG'}  = \left( {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC} } \right) \) \(\displaystyle + \left( {\overrightarrow {AM}  + \overrightarrow {BN}  + \overrightarrow {CP} } \right) \) \(\displaystyle + \left( {\overrightarrow {MG'}  + \overrightarrow {NG'}  + \overrightarrow {PG'} } \right)\)

Vì G là trọng tâm của tam giác ABC nên \(\displaystyle \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \) và G’ là trọng tâm của tam giác MNP nên \(\displaystyle \overrightarrow {MG'}  + \overrightarrow {NG'}  + \overrightarrow {PG'}  = \overrightarrow 0 \).

Do đó: \(\displaystyle 3\overrightarrow {GG'}  = \overrightarrow {AM}  + \overrightarrow {BN}  + \overrightarrow {CP} \)

Hay \(\displaystyle \overrightarrow {GG'}  = {1 \over 3}\left( {\overrightarrow {AM}  + \overrightarrow {BN}  + \overrightarrow {CP} } \right) \) \(\displaystyle = {1 \over 3}\overrightarrow {AA'} \)

Vì điểm G cố định và \(\displaystyle {1 \over 3}\overrightarrow {AA'} \) là vectơ không đổi nên G’ là điểm cố định. Vậy mặt phẳng  (MNP) luôn luôn đi qua điểm G’ cố định.

 HocTot.Nam.Name.Vn

  • Bài 3.5 trang 130 SBT hình học 11

    Giải bài 3.5 trang 130 sách bài tập hình học 11. Trong không gian cho hai hình bình hành ABCD và A’B’C’D’ chỉ có chung nhau một điểm A...

  • Bài 3.6 trang 130 SBT hình học 11

    Giải bài 3.6 trang 130 sách bài tập hình học 11. Chứng minh rằng tứ giác ABCD là hình bình hành...

  • Bài 3.7 trang 130 SBT hình học 11

    Giải bài 3.7 trang 130 sách bài tập hình học 11. Cho hình hộp ABCD.A’B’C’D’ có P và R lần lượt là trung điểm các cạnh AB và A’D’. Gọi P’, Q, Q’, R' lần lượt là tâm đối xứng của các hình bình hành ABCD, CDD’C’, A’B’C’D’, ADD’A’

  • Bài 3.3 trang 129 SBT hình học 11

    Giải bài 3.3 trang 129 sách bài tập hình học 11. Cho tứ diện ABCD. Gọi P và Q lần lượt là trung điểm của các cạnh AB và CD. Trên các cạnh AC và BD lần lượt ta lấy các điểm M, N sao cho...

  • Bài 3.2 trang 129 SBT hình học 11

    Giải bài 3.2 trang 129 sách bài tập hình học 11. Trong không gian cho điểm O và bốn điểm A, B, C, D phân biệt và không thẳng hàng. Chứng minh rằng điều kiện cần và đủ để bốn điểm A, B, C, D tạo thành một hình bình hành là:

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close