Bài 34 trang 33 SBT toán 8 tập 1

Giải bài 34 trang 33 sách bài tập toán 8. Rút gọn biểu thức : ...

Lựa chọn câu để xem lời giải nhanh hơn

Rút gọn biểu thức :

LG a

\(\displaystyle{{{x^4} + 15x + 7} \over {2{x^3} + 2}}.{x \over {14{x^2} + 1}}.\) \(\displaystyle {{4{x^3} + 4} \over {{x^4} + 15x + 7}}\)

Phương pháp giải:

- Muốn nhân hai phân thức, ta nhân các tử thức với nhau, nhân các mẫu thức với nhau.

- Muốn rút gọn một phân thức ta có thể : 

+ Phân tích tử thức và mẫu thức thành nhân tử (nếu cần) để tìm nhân tử chung;

+ Chia cả tử và mẫu cho nhân tử chung.

Lời giải chi tiết:

\(\displaystyle{{{x^4} + 15x + 7} \over {2{x^3} + 2}}.{x \over {14{x^2} + 1}}.\)\(\displaystyle{{4{x^3} + 4} \over {{x^4} + 15x + 7}}\)

\(\displaystyle = {{\left( {{x^4} + 15x + 7} \right).x.\left( {4{x^3} + 4} \right)} \over {\left( {2{x^3} + 2} \right).\left( {14{x^2} + 1} \right).\left( {{x^4} + 15x + 7} \right)}}\)

\(\displaystyle  = {{4x\left( {{x^3} + 1} \right)} \over {2\left( {{x^3} + 1} \right)\left( {14{x^2} + 1} \right)}} = {{2x} \over {14{x^2} + 1}}\)

LG b

\(\displaystyle{{{x^7} + 3{x^2} + 2} \over {{x^3} - 1}}.{{3x} \over {x + 1}}.{{{x^2} + x + 1} \over {{x^7} + 3{x^2} + 2}}\) 

Phương pháp giải:

- Muốn nhân hai phân thức, ta nhân các tử thức với nhau, nhân các mẫu thức với nhau.

- Muốn rút gọn một phân thức ta có thể : 

+ Phân tích tử thức và mẫu thức thành nhân tử (nếu cần) để tìm nhân tử chung;

+ Chia cả tử và mẫu cho nhân tử chung.

Lời giải chi tiết:

\(\displaystyle{{{x^7} + 3{x^2} + 2} \over {{x^3} - 1}}.{{3x} \over {x + 1}}.{{{x^2} + x + 1} \over {{x^7} + 3{x^2} + 2}}\)\(\displaystyle = {{\left( {{x^7} + 3{x^2} + 2} \right).3x.\left( {{x^2} + x + 1} \right)} \over {\left( {{x^3} - 1} \right)\left( {x + 1} \right)\left( {{x^7} + 3{x^2} + 2} \right)}}\)

\(\displaystyle = {{3x\left( {{x^2} + x + 1} \right)} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\left( {x + 1} \right)}} \) \(\displaystyle= {{3x} \over {\left( {x - 1} \right)\left( {x + 1} \right)}}\)

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close