Giải bài 3 trang 99 vở thực hành Toán 9

Cho đường tròn (O), đường thẳng d đi qua O và điểm A thuộc (O) nhưng không thuộc d. Gọi B là điểm đối xứng với A qua d; C và D lần lượt là điểm đối xứng với A và B qua O. a) Ba điểm B, C và D có thuộc (O) không? Vì sao? b) Chứng minh tứ giác ABCD là hình chữ nhật. c) Chứng minh rằng C và D đối xứng với nhau qua d.

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Cho đường tròn (O), đường thẳng d đi qua O và điểm A thuộc (O) nhưng không thuộc d. Gọi B là điểm đối xứng với A qua d; C và D lần lượt là điểm đối xứng với A và B qua O.

a) Ba điểm B, C và D có thuộc (O) không? Vì sao?

b) Chứng minh tứ giác ABCD là hình chữ nhật.

c) Chứng minh rằng C và D đối xứng với nhau qua d.

Phương pháp giải - Xem chi tiết

a) Tâm của đường tròn là tâm đối xứng của nó; đường thẳng đi qua tâm của đường tròn là một trục đối xứng của nó.

b) + Chứng minh O là trung điểm của AC và BD nên tứ giác ABCD là hình bình hành.

+ Chứng minh \(AC = BD\) nên hình bình hành ABCD là hình chữ nhật.

c) + Chứng minh AB//CD, do đó d là trung trực của AB cũng là đường trung trực của CD.

+ Suy ra, C và D đối xứng với nhau qua d.

Lời giải chi tiết

(H.5.3)

a) Vì d là một trục đối xứng của đường tròn và B đối xứng với A qua d nên từ \(A \in \left( O \right)\) suy ra \(B \in \left( O \right)\).

Lại có O là tâm đối xứng của đường tròn và C, D lần lượt là điểm đối xứng với A, B qua O nên từ \(A,B \in \left( O \right)\) suy ra \(C,D \in \left( O \right)\).

Vậy ba điểm B, C và D có thuộc (O).

b) Vì C đối xứng với A qua O nên O là trung điểm của AC.

Vì D đối xứng với B qua O nên O là trung điểm của BD.

Tứ giác ABCD có hai đường chéo AC, BD và O là trung điểm của AC, BD nên ABCD là hình bình hành. Lại có \(AC = BD\) (cùng bằng đường kính của (O)). Do đó, hình bình hành ABCD là hình chữ nhật.

c) Vì B đối xứng với A đến d nên d là đường trung trực của AB.

Hình chữ nhật ABCD có AB//CD nên d cũng là đường trung trực của CD. Do đó C và D đối xứng với nhau qua d.

  • Giải bài 4 trang 99 vở thực hành Toán 9

    Cho hình vuông ABCD có E là giao điểm của hai đường chéo. a) Chứng minh rằng có một đường tròn đi qua bốn điểm A, B, C và D. Xác định tâm đối xứng và chỉ ra hai trục đối xứng của đường tròn đó. b) Tính bán kính của đường tròn ở câu a, biết rằng hình vuông có cạnh bằng 3cm.

  • Giải bài 5 trang 100 vở thực hành Toán 9

    Cho tam giác ABC cân tại A có ba đỉnh nằm trên đường tròn (O). Đường cao AH cắt (O) tại D. Biết (BC = 24cm,AC = 20cm). Tính chiều cao AH và bán kính đường tròn (O).

  • Giải bài 2 trang 98 vở thực hành Toán 9

    Cho tam giác ABC vuông tại A có (AB = 3cm,AC = 4cm). Chứng minh rằng các điểm A, B, C thuộc cùng một đường tròn. Tính bán kính của đường tròn đó.

  • Giải bài 1 trang 98 vở thực hành Toán 9

    Trong mặt phẳng tọa độ Oxy, cho các điểm M(0; 2), N (0; -3) và P(2; -1). Vẽ hình và cho biết trong các điểm đã cho, điểm nào nằm trên, điểm nào nằm trong, điểm nào nằm ngoài đường tròn (O; (sqrt 5 ))? Vì sao?

  • Giải câu hỏi trắc nghiệm trang 97, 98 vở thực hành Toán 9

    Cho tam giác ABC vuông tại A. Tâm đường tròn đi qua ba đỉnh của tam giác ABC là A. trung điểm của BC. B. trung điểm của AC. C. trung điểm của AB. D. trọng tâm của tam giác ABC.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close