Giải bài 3 trang 87 SGK Toán 10 tập 1 – Cánh diềuCho bốn điểm A, B, C, D. Chứng minh: Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Đề bài Cho bốn điểm A, B, C, D. Chứng minh: a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \) b) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow 0 \) Phương pháp giải - Xem chi tiết a) Tách hai vecto ở vế trái thành tổng 2 vecto, sử dụng vecto đối: b) Sử dụng tính chất giao hoán trong phép cộng các vecto hoặc suy ra từ câu a, sử dụng vecto đối. Lời giải chi tiết a) \(\begin{array}{l}\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \\ \Leftrightarrow \overrightarrow {AB} - \overrightarrow {CB} = \overrightarrow {AD} - \overrightarrow {CD} \\ \Leftrightarrow \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AD} + \overrightarrow {DC} \\ \Leftrightarrow \overrightarrow {AC} = \overrightarrow {AC} \end{array}\) (luôn đúng) b) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow 0 \) Ta có: \(\begin{array}{l}\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} + \overrightarrow {DA} = (\overrightarrow {AB} + \overrightarrow {BC} ) + (\overrightarrow {CD} + \overrightarrow {DA} )\\ = \overrightarrow {AC} + \overrightarrow {CA} = \overrightarrow 0 \end{array}\) Chú ý khi giải +) Hiệu hai vecto chung gốc: \(\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow {CB} \) (suy ra từ tổng \(\overrightarrow {AB} = \overrightarrow {AC} + \overrightarrow {CB} \)) +) Với 4 điểm A, B, C, D bất kì ta có: \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow {AA} = \overrightarrow 0 \)
|