Giải bài 3 trang 87 SGK Toán 10 tập 1 – Cánh diều

Cho bốn điểm A, B, C, D. Chứng minh:

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Cho bốn điểm A, B, C, D. Chứng minh:

a) \(\overrightarrow {AB}  + \overrightarrow {CD}  = \overrightarrow {AD}  + \overrightarrow {CB} \)

b) \(\overrightarrow {AB}  + \overrightarrow {CD}  + \overrightarrow {BC}  + \overrightarrow {DA}  = \overrightarrow 0 \)

Phương pháp giải - Xem chi tiết

a) Tách hai vecto ở vế trái thành tổng 2 vecto, sử dụng vecto đối:

b) Sử dụng tính chất giao hoán trong phép cộng các vecto hoặc suy ra từ câu a, sử dụng vecto đối.

Lời giải chi tiết

a)

\(\begin{array}{l}\overrightarrow {AB}  + \overrightarrow {CD}  = \overrightarrow {AD}  + \overrightarrow {CB} \\ \Leftrightarrow \overrightarrow {AB}  - \overrightarrow {CB}  = \overrightarrow {AD}  - \overrightarrow {CD} \\ \Leftrightarrow \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AD}  + \overrightarrow {DC} \\ \Leftrightarrow \overrightarrow {AC}  = \overrightarrow {AC} \end{array}\)

(luôn đúng)

b) \(\overrightarrow {AB}  + \overrightarrow {CD}  + \overrightarrow {BC}  + \overrightarrow {DA}  = \overrightarrow 0 \)

Ta có:

\(\begin{array}{l}\overrightarrow {AB}  + \overrightarrow {CD}  + \overrightarrow {BC}  + \overrightarrow {DA}  = (\overrightarrow {AB}  + \overrightarrow {BC} ) + (\overrightarrow {CD}  + \overrightarrow {DA} )\\ = \overrightarrow {AC}  + \overrightarrow {CA}  = \overrightarrow 0 \end{array}\)

Chú ý khi giải

+) Hiệu hai vecto chung gốc: \(\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {CB} \) (suy ra từ tổng \(\overrightarrow {AB}  = \overrightarrow {AC}  + \overrightarrow {CB} \))

+) Với 4 điểm A, B, C, D bất kì ta có: \(\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DA}  = \overrightarrow {AA}  = \overrightarrow 0 \)

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close