Giải bài 3 trang 30 sách bài tập toán 9 - Chân trời sáng tạo tập 1Hãy cho biết các bất đẳng thức đực tạo thành khi: a) Cộng hai vế của bất đẳng thức p + 2 > 5 với – 2; b) Cộng hai vế của bất đẳng thức x + 10 ( le ) y + 11 với 9; c) Nhân hai vế của bất đẳng thức (frac{1}{3}x < 5) với 3, rồi tiếp tục cộng với – 15; d) Cộng hai vế của bất đẳng thức 2m ( le ) - 3 với – 1, rồi tiếp tục nhân với ( - frac{1}{2}). Đề bài Hãy cho biết các bất đẳng thức đực tạo thành khi: a) Cộng hai vế của bất đẳng thức p + 2 > 5 với – 2; b) Cộng hai vế của bất đẳng thức x + 10 \( \le \) y + 11 với 9; c) Nhân hai vế của bất đẳng thức \(\frac{1}{3}x < 5\) với 3, rồi tiếp tục cộng với – 15; d) Cộng hai vế của bất đẳng thức 2m \( \le \) - 3 với – 1, rồi tiếp tục nhân với \( - \frac{1}{2}\). Phương pháp giải - Xem chi tiết Dựa vào: Tính chất liên hệ giữa thứ tự và phép cộng: Cho ba số a, b, c. Nếu a > b thì a + c > b + c. Tính chất liên hệ giữa thứ tự và phép nhân: Cho ba số a, b, c. Nếu a > b *Nếu c > 0 thì a.c > b.c; *Nếu c < 0 thì a.c < b.c; Các tính chất trên vẫn đúng với các bất đẳng thức có dấu <, \( \ge ,\)\( \le \). Lời giải chi tiết a) p + 2 > 5 p + 2 + (-2) > 5 + (-2) p > 3. b) x + 10 + 9 \( \le \) y + 11 + 9 x + 19 \( \le \) y + 20 c) \(\frac{1}{3}x < 5\) \(\begin{array}{l}3.\frac{1}{3}x + ( - 15) < 5.3 + ( - 15)\\x - 15 < 0\end{array}\) d) \(2m \le - 3\) \(\begin{array}{l}\left[ {2m + ( - 1)} \right].\left( { - \frac{1}{2}} \right) \le \left[ { - 3 + ( - 1)} \right].\left( { - \frac{1}{2}} \right)\\ - m + \frac{1}{2} \ge 2\end{array}\)
|