Giải bài 2.8 trang 36 SGK Toán 8 tập 1 - Kết nối tri thức

Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu.

Đề bài

Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu.

a)      \(27 + 54x + 36{x^2} + 8{x^3}\).

b)      \(64{x^3} - 144{x^2}y + 108x{y^2} - 27{y^3}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng các hằng đẳng thức đáng nhớ để tìm ra dạng lập phương của một tổng hoặc một hiệu của các biểu thức đó.

a. \( {a}^3 + 3.{a}^2.b + 3.{a}.{{b}^2} + {{b}^3} = {\left( {a+b} \right)^3} \)

 b. \({ {a}^3 - 3.{a}^2.b + 3.{a}.{{b}^2} - {{b}^3} = \left( {a-b} \right)^3} \)

Lời giải chi tiết

a)      \(27 + 54x + 36{x^2} + 8{x^3} \) \(= {3^3} + {3.3^2}.2x + 3.3.{\left( {2x} \right)^2} + {\left( {2x} \right)^3} \) \(= {\left( {3 + 2x} \right)^3}\)

b)      \(64{x^3} - 144{x^2}y + 108x{y^2} - 27{y^3} \) \(= {\left( {4x} \right)^3} - 3.{\left( {4x} \right)^2}.3y + 3.4x.{\left( {3y} \right)^2} - {\left( {3y} \right)^3} \) \(= {\left( {4x - 3y} \right)^3}\)

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close