Giải bài 27 trang 14 SBT toán 10 - Cánh diều

Chứng minh rằng: a) \(kC_n^k = nC_{n - 1}^{k - 1}\) với \(1 \le k \le n\) b) \(\frac{1}{{k + 1}}C_n^k = \frac{1}{{n + 1}}C_{n + 1}^{k + 1}\) với \(0 \le k \le n\)

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Chứng minh rằng: 

a) \(kC_n^k = nC_{n - 1}^{k - 1}\) với \(1 \le k \le n\)

b) \(\frac{1}{{k + 1}}C_n^k = \frac{1}{{n + 1}}C_{n + 1}^{k + 1}\) với \(0 \le k \le n\)

Phương pháp giải - Xem chi tiết

Áp dụng công thức và tính chất của tổ hợp để biến đổi vế phức tạp hơn của các đẳng thức trên

Một số công thức áp dụng: \(n(n - 1)! = n!,k(k - 1)! = k!\)

Lời giải chi tiết

a) Với \(1 \le k \le n\),  biến đổi vế phải ta có:

VP = \(nC_{n - 1}^{k - 1} = \frac{{n(n - 1)!}}{{(k - 1)!\left[ {(n - 1) - (k - 1)} \right]!}}\)\( = \frac{{n!}}{{(k - 1)!(n - k)!}} = \frac{{n!}}{{\frac{{k!}}{k}(n - k)!}}\)\( = k\frac{{n!}}{{k!(n - k)!}}\) \( = kC_n^k\) = VT (ĐPCM)

b) Với \(0 \le k \le n\),  biến đổi vế phải ta có:

VP = \(\frac{1}{{n + 1}}C_{n + 1}^{k + 1} = \frac{1}{{n + 1}}\frac{{(n + 1)!}}{{(k + 1)!\left[ {(n + 1) - (k + 1)} \right]!}}\)\( = \frac{{(n + 1).n!}}{{(n + 1)(k + 1)!(n - k)!}} = \frac{{n!}}{{(k + 1)!(n - k)!}}\)

     \( = \frac{{n!}}{{(k + 1)k!(n - k)!}} = \frac{1}{{k + 1}}\frac{{n!}}{{k!(n - k)!}}\) \( = \frac{1}{{k + 1}}C_n^k\) = VT (ĐPCM)

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close