Giải bài 26 trang 110 sách bài tập toán 9 - Cánh diều tập 1Cho tam giác ABC vuông tại A có đường cao AH. Hình chiếu của H trên AB, AC lần lượt là D, E. Gọi (O) là đường tròn đường kính HB và (O') là đường tròn đường kính HC. Chứng minh: a) Điểm D thuộc đường tròn (O) và điểm E thuộc đường tròn (O’); b) Hai đường tròn (O) và (O') tiếp xúc ngoài; c) AH là tiếp tuyến chung của hai đường tròn (O) và (O’); d) AH = DE; e) Diện tích tứ giác DEO’O bằng nửa diện tích tam giác ABC. Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Đề bài Cho tam giác ABC vuông tại A có đường cao AH. Hình chiếu của H trên AB, AC lần lượt là D, E. Gọi (O) là đường tròn đường kính HB và (O') là đường tròn đường kính HC. Chứng minh: a) Điểm D thuộc đường tròn (O) và điểm E thuộc đường tròn (O’); b) Hai đường tròn (O) và (O') tiếp xúc ngoài; c) AH là tiếp tuyến chung của hai đường tròn (O) và (O’); d) AH = DE; e) Diện tích tứ giác DEO’O bằng nửa diện tích tam giác ABC. Phương pháp giải - Xem chi tiết a) Chứng minh \(OB = OD = OH = \frac{{BH}}{2}\); \(O'H = O'E = O'C = \frac{{HC}}{2}\). b) Chứng minh \(OO' = OH + O'H\). c) Chứng minh \(AH \bot OO'\). d) Chứng minh ADHE là hình chữ nhật. e) Bước 1: Chứng minh ODEO’ là hình thang vuông. Bước 2: Biểu diễn diện tích 2 hình theo công thức. Bước 3: Vận dụng dữ kiện \(AH = DE\), \(BC = BH + CH = 2\left( {OD + O'E} \right)\) để biến đổi. Lời giải chi tiết a) Do tam giác BDH vuông tại D và O là trung điểm của BH (BO và HO là bán kính đường tròn (O)) nên \(OB = OD = OH = \frac{{BH}}{2}\), do đó D thuộc đường tròn (O). Do tam giác ECH vuông tại E và O’ là trung điểm của CH (O’H và O’C là bán kính đường tròn (O)) nên \(O'H = O'E = O'C = \frac{{HC}}{2}\), do đó E thuộc đường tròn (O’). b) Do tam giác ABC vuông tại A có AH là đường cao, \(H \in BC\) nên H nằm giữa B và C. Mà (O) là đường tròn đường kính HB và (O') là đường tròn đường kính HC nên H nằm giữa O và O’, do đó \(OO' = OH + O'H\), vậy đường tròn (O) và (O') tiếp xúc ngoài. c) Ta có OH, O’H lần lượt là bán kính của (O) và (O’) , và AH vuông góc với OO’ tại H nên AH là tiếp tuyến chung của hai đường tròn (O) và (O’). d) Do tam giác BDH vuông tại D nên \(\widehat {BDH} = 90^\circ \), do đó \(\widehat {HDA} = 90^\circ \). Do tam giác ECH vuông tại E nên \(\widehat {ECH} = 90^\circ \), do đó \(\widehat {HEA} = 90^\circ \). Xét tứ giác ADHE có \(\widehat {HDA} = \widehat {HEA} = \widehat {DAE} = 90^\circ \) nên ADHE là hình chữ nhật, do đó \(AH = DE\). e) Do ADHE là hình chữ nhật nên \(IA = ID = IH = IE\). Xét hai tam giác OID và OIH có: \(OD = OH\); OI chung; \(ID = IH\) Suy ra \(\Delta OID = \Delta OIH\) (c.c.c), do đó \(\widehat {OHI} = \widehat {ODI} = 90^\circ \), hay \(OD \bot DE\). Xét hai tam giác OIE và O’IH có: \(O'E = O'H\); O’I chung; \(IE = IH\) Suy ra \(\Delta OIE = \Delta O'IH\)(c.c.c), do đó \(\widehat {O'HI} = \widehat {O'EI} = 90^\circ \), hay \(O'E \bot DE\). Xét ODEO’ có \(OD \bot DE\), \(O'E \bot DE\) nên \(OD//EO'\), do đó ODEO’ là hình thang vuông và DE là đường cao. Diện tích hình thang ODEO’ và tam giác ABC lần lượt là: \({S_1} = \frac{{DE\left( {OD + O'E} \right)}}{2};{S_2} = \frac{{AH.BC}}{2}\) Mà \(AH = DE\), \(BC = BH + CH = 2\left( {OD + O'E} \right)\) Suy ra \({S_1} = \frac{1}{2}{S_2}\). Vậy diện tích tứ giác DEO’O bằng nửa diện tích tam giác ABC.
|