Giải bài 25 trang 71 sách bài tập toán 9 - Cánh diều tập 2

Cho phương trình ({x^2} + x - 2 + sqrt 2 = 0.) a) Chứng tỏ rằng phương trình có hai nghiệm ({x_1};{x_2}) trái dấu. b) Không giải phương trình, tính: (A = x_1^2 + x_2^2;B = x_1^3 + x_2^3;C = frac{1}{{{x_1}}} + frac{1}{{{x_2}}};D = left| {{x_1} - {x_2}} right|.)

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Cho phương trình \({x^2} + x - 2 + \sqrt 2  = 0.\)

a) Chứng tỏ rằng phương trình có hai nghiệm \({x_1};{x_2}\) trái dấu.

b) Không giải phương trình, tính:

\(A = x_1^2 + x_2^2;\\B = x_1^3 + x_2^3;\\C = \frac{1}{{{x_1}}} + \frac{1}{{{x_2}}};\\D = \left| {{x_1} - {x_2}} \right|.\)

Phương pháp giải - Xem chi tiết

a) Chứng minh \(ac < 0\).

b) Bước 1: Áp dụng định lý Viète để tính \({x_1} + {x_2};{x_1}.{x_2}\)

Bước 2: Biến đổi biểu thức để làm xuất hiện \({x_1} + {x_2};{x_1}.{x_2}\)

Lời giải chi tiết

a) Phương trình có các hệ số \(a = 1;b = 1;c =  - 2 + \sqrt 2 .\)

Ta có \(ac = 1.\left( { - 2 + \sqrt 2 } \right) =  - 2 + \sqrt 2  < 0\), suy ra phương trình có hai nghiệm \({x_1};{x_2}\) trái dấu.

b) Do phương trình luôn có 2 nghiệm nên áp dụng định lý Viète, ta có:

\({x_1} + {x_2} =  - 1;{x_1}.{x_2} =  - 2 + \sqrt 2 .\)

+) \(A = {x_1}^2 + {x_2}^2 \)

\(= {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} \\= {\left( { - 1} \right)^2} - 2\left( { - 2 + \sqrt 2 } \right) \\= 5 - 2\sqrt 2 \)

+) \(B = x_1^3 + x_2^3 \)

\(= \left( {{x_1} + {x_2}} \right)\left( {{x_1}^2 - {x_1}{x_2} + {x_2}^2} \right) \\= \left( {{x_1} + {x_2}} \right)\left( {{{\left( {{x_1} + {x_2}} \right)}^2} - 3{x_1}{x_2}} \right)\\ = \left( { - 1} \right)\left( {{{\left( { - 1} \right)}^2} - 3\left( { - 2 + \sqrt 2 } \right)} \right)\\ =  - 7 + 3\sqrt 2 \)

+) \(C = \frac{1}{{{x_1}}} + \frac{1}{{{x_2}}}\)

\(= \frac{{{x_1} + {x_2}}}{{{x_1}.{x_2}}} \\= \frac{{ - 1}}{{ - 2 + \sqrt 2 }} \\= \frac{1}{{2 - \sqrt 2 }} \\= 1 + \frac{{\sqrt 2 }}{2}\)

+) Xét \({D^2} = {\left| {{x_1} - {x_2}} \right|^2} \)

\(= {x_1}^2 + {x_2}^2 - 2{x_1}{x_2} \\= {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} \\= {\left( { - 1} \right)^2} - 4\left( { - 2 + \sqrt 2 } \right)\\ = 9 - 4\sqrt 2  \\= {\left( {2\sqrt 2  - 1} \right)^2}\)

Suy ra \(D = 2\sqrt 2  - 1\).

  • Giải bài 26 trang 71 sách bài tập toán 9 - Cánh diều tập 2

    a) Cho phương trình ( - {x^2} + 5kx + 4 = 0.) Tìm các giá trị k để phương trình có hai nghiệm ({x_1};{x_2}) thoả mãn điều kiện (x_1^2 + x_2^2 + 6{x_1}{x_2} = 9.) b) Cho phương trình (k{x^2} - 6left( {k - 1} right)x + 9left( {k - 3} right) = 0left( {k ne 0} right).)Tìm các giá trị k để phương trình có hai nghiệm ({x_1};{x_2}) thoả mãn điều kiện ({x_1} + {x_2} - {x_1}{x_2} = 0.)

  • Giải bài 27 trang 71 sách bài tập toán 9 - Cánh diều tập 2

    Cho phương trình ({x^2} + 2left( {2m - 1} right)x - 4{m^2} - 1 = 0.) a) Chứng tỏ rằng phương trình luôn có hai nghiệm ({x_1};{x_2})với mọi giá trị của m. b) Tìm biểu thức liên hệ giữa hai nghiệm ({x_1};{x_2}) không phụ thuộc vào giá trị của m.

  • Giải bài 28 trang 71 sách bài tập toán 9 - Cánh diều tập 2

    Cho phương trình ({x^2} + 2left( {k + 1} right)x + {k^2} + 2k = 0). a) Tìm các giá trị k để phương trình luôn có hai nghiệm ({x_1};{x_2})và (left| {{x_1}} right|.left| {{x_2}} right| = 1). b*) Tìm các giá trị k ((k < 0)) để phương trình luôn có hai nghiệm ({x_1};{x_2})trái dấu và nghiệm dương nhỏ hơn giá trị tuyệt đối của nghiệm âm.

  • Giải bài 29 trang 71 sách bài tập toán 9 - Cánh diều tập 2

    Tìm các số x, y với (x < y)thoả mãn: a) (x + y = 16)và (xy = 15); b) (x + y = 2) và (xy = - 2).

  • Giải bài 30 trang 71 sách bài tập toán 9 - Cánh diều tập 2

    Cho phương trình ({x^2} + left( {2m - 1} right)x - m = 0). a) Tìm các giá trị m để phương trình có hai nghiệm phân biệt. b) Gọi ({x_1};{x_2})là hai nghiệm của phương trình. Tìm các giá trị m để biểu thức (A = {x_1}^2 + {x_2}^2 - {x_1}{x_2}) đạt giá trị nhỏ nhất.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close