Bài 22 trang 8 SBT toán 9 tập 1

Giải bài 22 trang 8 sách bài tập toán 9. Với n là số tự nhiên, chứng minh đẳng thức..(n + 1)...n..

Đề bài

Với n là số tự nhiên, chứng minh đẳng thức: 

(n+1)2+n2=(n+1)2n2

Viết đẳng thức trên khi n là 1, 2, 3, 4, 5, 6, 7. 

Phương pháp giải - Xem chi tiết

Áp dụng:

A2=|A|

Nếu A0 thì |A|=A

Nếu A<0 thì |A|=A

Sử dụng hằng đẳng thức:

(a+b)2=a2+2ab+b2

(ab)2=a22ab+b2

Lời giải chi tiết

Ta có:

(n+1)2+n2=|n+1|+|n|

Do nNn+1>0

Nên |n+1|+|n|=n+1+n=2n+1 (1)

Ta có:

(n+1)2n2=n2+2n+1n2 
  =2n+1 (2)

Từ (1) và (2) suy ra vế phải bằng vế trái nên đẳng thức được chứng minh.

Với n=1, ta có:

(1+1)2+12=(1+1)2124+1=41

Với n=2, ta có:

(2+1)2+22=(2+1)2229+4=94 

Với n=3, ta có:

(3+1)2+32=(3+1)23216+9=169

Với n=4, ta có:

(4+1)2+42=(4+1)24225+16=2516

Với n=5, ta có:

(5+1)2+52=(5+1)25236+25=3625

Với n=6, ta có:

(6+1)2+62=(6+1)26249+36=4936 

Với n=7, ta có:

(7+1)2+72=(7+1)27264+49=6449

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close