Bài 2.105 trang 137 SBT giải tích 12Giải bài 2.105 trang 137 sách bài tập giải tích 12. Tìm tập hợp nghiệm của bất phương trình... Đề bài Tìm tập hợp nghiệm của bất phương trình \(\displaystyle {\log _2}\frac{{3x}}{{x + 2}} > 1\). A. \(\displaystyle \left( { - \infty ; - 2} \right)\) B. \(\displaystyle \left( {4; + \infty } \right)\) C. \(\displaystyle \left( { - \infty ; - 2} \right) \cup \left( {4; + \infty } \right)\) D. \(\displaystyle \left( { - 2;4} \right)\) Phương pháp giải - Xem chi tiết Sử dụng công thức \(\displaystyle {\log _a}f\left( x \right) > m \Leftrightarrow f\left( x \right) > {a^m}\) với \(\displaystyle a > 1\). Lời giải chi tiết Ta có: \(\displaystyle {\log _2}\frac{{3x}}{{x + 2}} > 1\)\(\displaystyle \Leftrightarrow \frac{{3x}}{{x + 2}} > 2\) \(\displaystyle \Leftrightarrow \frac{{3x - 2x - 4}}{{x + 2}} > 0\) \(\displaystyle \Leftrightarrow \frac{{x - 4}}{{x + 2}} > 0 \Leftrightarrow \left[ \begin{array}{l}x > 4\\x < - 2\end{array} \right.\). Vậy tập nghiệm là \(\displaystyle \left( { - \infty ; - 2} \right) \cup \left( {4; + \infty } \right)\). Chọn C. HocTot.Nam.Name.Vn
|