Bài 2.102 trang 137 SBT giải tích 12

Giải bài 2.102 trang 137 sách bài tập giải tích 12. Số nghiệm của phương trình...

Đề bài

Số nghiệm của phương trình \(\displaystyle  {\log _{2003}}x + {\log _{2004}}x = 2005\) là:

A. \(\displaystyle  0\)                   B. \(\displaystyle  1\)

C. \(\displaystyle  2\)                   D. Vô số

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp hàm số để giải phương trình.

Lời giải chi tiết

Xét hàm \(\displaystyle  f\left( x \right) = {\log _{2003}}x + {\log _{2004}}x\) trên \(\displaystyle  \left( {0; + \infty } \right)\) có:

\(\displaystyle  f'\left( x \right) = \frac{1}{{x\ln 2003}} + \frac{1}{{x\ln 2004}} > 0\) với mọi \(\displaystyle  x > 0\) nên hàm số đồng biến trên \(\displaystyle  \left( {0; + \infty } \right)\).

Mà \(f\left( 1 \right) = {\log _{2003}}1 + {\log _{2004}}1 = 0\)

\(\displaystyle  \mathop {\lim }\limits_{x \to  + \infty } f\left( x \right)\) \(\displaystyle   = \mathop {\lim }\limits_{x \to  + \infty } \left( {{{\log }_{2003}}x + {{\log }_{2004}}x} \right) =  + \infty \)

Nên đường thẳng \(y=2005\) cắt đồ thị hàm số \(y=f(x)\) tại duy nhất 1 điểm.

Do đó tồn tại duy nhất giá trị \(\displaystyle  {x_0} > 1\) sao cho \(\displaystyle  f\left( {{x_0}} \right) = 2005\).

Vậy phương trình có nghiệm duy nhất.

Chọn B.

HocTot.Nam.Name.Vn

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close