Giải bài 2 trang 22 sách bài tập toán 12 - Chân trời sáng tạoTìm các tiệm cận của đồ thị hàm số sau: a) (y = frac{{x - 5}}{{2{rm{x}} + 1}}); b) (y = frac{{2{rm{x}}}}{{x - 3}}); c) (y = - frac{6}{{3{rm{x}} + 2}}). Đề bài Tìm các tiệm cận của đồ thị hàm số sau: a) y=x−52x+1; b) y=2xx−3; c) y=−63x+2. Phương pháp giải - Xem chi tiết ‒ Tìm tiệm cận đứng: Tính lim hoặc \mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right), nếu một trong các giới hạn sau thoả mãn: \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty thì đường thẳng x = {x_0} là đường tiệm cận đứng. ‒ Tìm tiệm cận ngang: Nếu \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0} hoặc \mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0} thì đường thẳng y = {y_0} là đường tiệm cận ngang. Lời giải chi tiết a) Tập xác định: D = \mathbb{R}\backslash \left\{ { - \frac{1}{2}} \right\}. Ta có: • \mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ - }} \frac{{x - 5}}{{2{\rm{x}} + 1}} = + \infty ;\mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ + }} \frac{{x - 5}}{{2{\rm{x}} + 1}} = - \infty Vậy x = - \frac{1}{2} là tiệm cận đứng của đồ thị hàm số đã cho. • \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 5}}{{2{\rm{x}} + 1}} = \frac{1}{2};\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{x - 5}}{{2{\rm{x}} + 1}} = \frac{1}{2} Vậy y = \frac{1}{2} là tiệm cận ngang của đồ thị hàm số đã cho. b) Tập xác định: D = \mathbb{R}\backslash \left\{ 3 \right\}. Ta có: • \mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{2{\rm{x}}}}{{x - 3}} = - \infty ;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{2{\rm{x}}}}{{x - 3}} = + \infty Vậy x = 3 là tiệm cận đứng của đồ thị hàm số đã cho. • \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2{\rm{x}}}}{{x - 3}} = 2;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{2{\rm{x}}}}{{x - 3}} = 2 Vậy y = 2 là tiệm cận ngang của đồ thị hàm số đã cho. c) Tập xác định: D = \mathbb{R}\backslash \left\{ { - \frac{2}{3}} \right\}. Ta có: • \mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ - }} \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) = + \infty ;\mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ + }} \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) = - \infty Vậy x = - \frac{2}{3} là tiệm cận đứng của đồ thị hàm số đã cho. • \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) = - 2;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) = - 2 Vậy y = - 2 là tiệm cận ngang của đồ thị hàm số đã cho.
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
|