Giải bài 1.5 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thứcTrong một chiếc hộp có 10 quả cầu có kích thước và khối lượng giống nhau, trong đó có 4 quả ghi số 1; 3 quả ghi số 2; 2 quả ghi số 3 và 1 quả ghi số 4. Lấy ngẫu nhiên đồng thời hai quả cầu rồi cộng hai số trên hai quả cầu với nhau. Gọi X là kết quả thu được. Lập bảng phân bố xác suất của X. Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài Trong một chiếc hộp có 10 quả cầu có kích thước và khối lượng giống nhau, trong đó có 4 quả ghi số 1; 3 quả ghi số 2; 2 quả ghi số 3 và 1 quả ghi số 4. Lấy ngẫu nhiên đồng thời hai quả cầu rồi cộng hai số trên hai quả cầu với nhau. Gọi X là kết quả thu được. Lập bảng phân bố xác suất của X. Phương pháp giải - Xem chi tiết Bước 1: Tính xác suất của các biến cố Bước 2: Lập bảng phân bố xác suất Lời giải chi tiết X là kết quả thu được khi cộng hai số trên hai quả cầu với nhau. Khi đó giá trị của X thuộc tập {2; 3; 4; 5; 6; 7}. Gọi \({A_{ij}}\) là biến cố: “Lấy ngẫu nhiên đồng thời 2 quả cầu trong đó một quả cầu ghi số i và một quả cầu ghi số j”. với \(1 \le i \le 4;1 \le j \le 4\) \(\begin{array}{l}P\left( {X = 2} \right) = P({A_{11}}) = \frac{{C_4^2}}{{C_{10}^2}} = \frac{6}{{45}}\\P\left( {X = 3} \right) = P({A_{12}}) = \frac{{C_4^1.C_3^1}}{{C_{10}^2}} = \frac{{12}}{{45}}\\P\left( {X = 4} \right) = P({A_{13}}) + P({A_{22}}) = \frac{{C_4^1.C_2^1}}{{C_{10}^2}} + \frac{{C_3^2}}{{C_{10}^2}} = \frac{{11}}{{45}}\\P\left( {X = 5} \right) = P({A_{14}}) + P({A_{23}}) = \frac{{C_4^1.C_1^1}}{{C_{10}^2}} + \frac{{C_3^1.C_2^1}}{{C_{10}^2}} = \frac{{10}}{{45}}\\P\left( {X = 6} \right) = P({A_{33}}) + P({A_{24}}) = \frac{{C_4^1.C_1^1}}{{C_{10}^2}} + \frac{{C_3^1C_2^1}}{{C_{10}^2}} = \frac{4}{{45}}\\P\left( {X = 7} \right) = P({A_{34}}) = \frac{{C_2^1.C_1^1}}{{C_{10}^2}} = \frac{2}{{45}}\end{array}\) Bảng phân bố xác suất của X là
|