Giải bài 1.4 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thứcHai xạ thủ An và Bình tập bắn một cách độc lập với nhau. Mỗi người thực hiện hai phát bắn một cách độc lập. Xác suất bắn trúng bia của An và của Bình trong mỗi phát bắn tương ứng là 0.4 và 0,5. Gọi X là số phát bắn trúng bia của An, Y là số phát bắn trúng bia của Bình. a) Lập bảng phân bố xác suất của X, Y. b) Tính (Eleft( X right),Eleft( Y right),Vleft( X right),V(Y).) Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài Hai xạ thủ An và Bình tập bắn một cách độc lập với nhau. Mỗi người thực hiện hai phát bắn một cách độc lập. Xác suất bắn trúng bia của An và của Bình trong mỗi phát bắn tương ứng là 0.4 và 0,5. Gọi X là số phát bắn trúng bia của An, Y là số phát bắn trúng bia của Bình. a) Lập bảng phân bố xác suất của X, Y. b) Tính \(E\left( X \right),E\left( Y \right),V\left( X \right),V(Y).\) Phương pháp giải - Xem chi tiết Bước 1: Tính xác suất của các biến cố X,Y Bước 2: Lập bảng phân bố xác suất X,Y Bước 3: Tính kì vọng và phương sai của các biến ngẫu nhiên theo công thức dựa vào bảng phân phối Lời giải chi tiết Xác suất bắn trúng bia của An và của Bình trong mỗi phát bắn tương ứng là 0,4 và 0,5. Nên xác suất bắn không trúng bia của An và Bình trong mỗi phát bắn tương ứng là 0,6 và 0,5. a) X là số phát bắn trúng bia của An. \( \Rightarrow \) Giá trị của X thuộc tập {0; 1; 2}. Biến cố {X = 0}: “Cả hai phát bắn đều trượt”. \( \Rightarrow P\left( {X = 0} \right) = 0,6.0,6 = 0,36.\) Biến cố {X = 1}: “Có 1 phát bắn trúng bia”.\( \Rightarrow P\left( {X = 1} \right) = 0,4.0,6 + 0,6.0,4 = 0,48.\) Biến cố {X = 2}: “Cả hai phát bắn đều trúng”.\( \Rightarrow P\left( {X = 2} \right) = 0,4.0,4 = 0,16.\) Bảng phân bố xác suất của X là Y là số phát bắn trúng bia của Bình. \( \Rightarrow \) Giá trị của Y thuộc tập {0; 1; 2}. Biến cố {Y = 0}: “Cả hai phát bắn đều trượt”. \( \Rightarrow P\left( {Y = 0} \right) = 0,5.0,5 = 0,25.\) Biến cố {Y = 1}: “Có 1 phát bắn trúng bia”. \( \Rightarrow P\left( {Y = 1} \right) = 0,5.0,5 + 0,5.0,5 = 0,5.\) Biến cố {Y = 2}: “Cả hai phát bắn đều trúng”. \( \Rightarrow P\left( {Y = 2} \right) = 0,5.0,5 = 0,25.\) Bảng phân bố xác suất của Y là b) \(\begin{array}{l}E\left( X \right) = 0.0,36 + 1.0,48 + 2.0,16 = 0,8.\\V\left( X \right) = {0^2}.0,36 + {1^2}.0,48 + {2^2}.0,16--{0,8^2}\; = 0,48.\\E\left( Y \right) = 0.0,25 + 1.0,5 + 2.0,25 = 1.\\V\left( Y \right) = {0^2}.0,25 + {1^2}.0,5 + {2^2}.0,25--{1^2}\; = 0,5.\end{array}\)
|