Giải Bài 1.34 trang 25 SGK Toán 8 tập 1 - Kết nối tri thứcRút gọn biểu thức: Đề bài Rút gọn biểu thức: \(\left( {3{x^2} - 5xy - 4{y^2}} \right).\left( {2{x^2} + {y^2}} \right) + \left( {2{x^4}y - {x^3}{y^3} - {x^2}{y^4}} \right):\left( {\dfrac{1}{5}xy} \right)\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết * Bài làm trong video là để bài trong sách bản mềm nên đề bài có chút khác so với sách xuất bản. + Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau. + Muốn chia đa thức A cho đơn thức B ta chia từng hạng tử của A cho B rồi cộng các kết quả với nhau. Lời giải chi tiết \(\left( {3{x^2} - 5xy - 4{y^2}} \right).\left( {2{x^2} + {y^2}} \right) + \left( {2{x^4}y^2 + {x^3}{y^3} + {x^2}{y^4}} \right):\left( {\dfrac{1}{5}xy} \right)\) \(= 3{x^2}.2{x^2} + 3{x^2}.{y^2} - 5xy.2{x^2} - 5xy.{y^2} - 4{y^2}.2{x^2} - 4{y^2}.{y^2} \\+ 2{x^4}y^2:\left( {\dfrac{1}{5}xy} \right) + {x^3}{y^3}:\left( {\dfrac{1}{5}xy} \right) + {x^2}{y^4}:\left( {\dfrac{1}{5}xy} \right)\) \(= 6{x^4} + 3{x^2}{y^2} - 10{x^3}y - 5x{y^3} - 8{x^2}{y^2} - 4{y^4}\\ + 10{x^3}y + 5{x^2}{y^2} + 5x{y^3}\) \(= 6{x^4} - 4{y^4}+ ( - 10{x^3}y + 10{x^3}y) + \left( { - 5x{y^3} + 5x{y^3}} \right) \\ + \left( {3{x^2}{y^2} - 8{x^2}{y^2} + 5{x^2}{y^2}} \right)\) \(= 6{x^4} - 4{y^4}\)
|