Giải bài 13 trang 111 sách bài tập toán 9 - Cánh diều tập 2

Trên mặt phẳng toạ độ Oxy cho M(–4; 0), N(4; 0) và P(3; 3). a) Phép quay ngược chiều α° tâm O biến điểm M thành điểm N. Tìm α. b) Qua phép quay thuận chiều 90° tâm O, điểm P biến thành điểm nào?

Đề bài

Trên mặt phẳng toạ độ Oxy cho M(–4; 0), N(4; 0) và P(3; 3).

a) Phép quay ngược chiều α° tâm O biến điểm M thành điểm N. Tìm α.

b) Qua phép quay thuận chiều 90° tâm O, điểm P biến thành điểm nào?

Phương pháp giải - Xem chi tiết

Dựa vào phép quay thuận chiều \({\alpha ^o}\) (\({0^o} < {\alpha ^o} < {360^o}\)) tâm O giữ nguyên điểm O, biến điểm M (khác điểm O) thành điểm M’ thuộc đường tròn (O; OM) sao cho tia OM quay thuận chiều kim đồng hồ đến tia OM’ thì điểm M tạo nên cung MnM’ có số đo \({\alpha ^o}\).

Dựa vào phép quay thuận chiều \({\alpha ^o}\) (\({0^o} < {\alpha ^o} < {360^o}\)) tâm O được phát biểu tương tự như trên.

Lời giải chi tiết

a)

 

Ta có: M(–4; 0), N(4; 0) suy ra OM = |–4| = 4; ON = |4| = 4.

Do đó OM = OM. (1)

Ta cũng suy ra được điểm M và điểm N cùng nằm trên trục Ox, đối xứng với nhau qua điểm O, khi đó \(\widehat {MON} = {180^o}\).

Do đó, tia OM quay đến tia ON theo chiều ngược kim đồng hồ tạo thành một cung có số đo bằng 180°. (2)

Từ (1) và (2), ta có phép quay ngược chiều 180° tâm O biến điểm M thành điểm N.

Vậy α = 180.

b)

Gọi H là hình chiếu của điểm P trên Ox.

Do P(3; 3) nên H(3; 0). Suy ra OH = 3 và PH = 3.

Do đó ∆OPH vuông cân tại H, nên \(\widehat {POH} = {45^o}\).

Gọi Q là điểm đối xứng với P(3; 3) qua Ox. Khi đó Q(3; –3).

Ta cũng chứng minh được \(\widehat {QOH} = {45^o}\).

Khi đó, \(\widehat {POQ} = \widehat {POH} + \widehat {HOQ} = {45^o} + {45^o} = {90^o}\).

Mặt khác, P và Q đối xứng với nhau qua Ox hay OH là trung trực của PQ, nên OP = OQ. Do đó tia OP quay đến tia OQ theo chiều kim đồng hồ tạo thành một cung có số đo bằng 90°.

Vậy phép quay thuận chiều 90° tâm O điểm P(3; 3) biến thành điểm Q(3; – 3).

  • Giải bài 14 trang 111 sách bài tập toán 9 - Cánh diều tập 2

    a) Cho hình bình hành ABCD, O là giao điểm của hai đường chéo AC và BD. Chỉ ra phép quay ngược chiều tâm O sao cho phép quay đó biến mỗi điểm C và D thành điểm đối xứng với nó qua tâm O. b) Cho lục giác đều A1A2A3A4A5A6 tâm O. Chỉ ra phép quay thuận chiều tâm O sao cho phép quay đó biến mỗi điểm A3, A4, A5 thành điểm đối xứng với nó qua tâm O.

  • Giải bài 15 trang 111 sách bài tập toán 9 - Cánh diều tập 2

    Cho hình vuông ABCD với tâm O. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AD, DC, CB, BA (Hình 15). a) Chứng minh tứ giác MNPQ là hình vuông. b) Phép quay ngược chiều 90° tâm O biến các điểm O, D, N tương ứng thành các điểm nào? c) Chỉ ra các phép quay tâm O giữ nguyên hình vuông MNPQ.

  • Giải bài 16 trang 112 sách bài tập toán 9 - Cánh diều tập 2

    Cho hai hình vuông ABCD và BEFG (Hình 16). a) Phép quay thuận chiều 90° tâm B biến các điểm A, B, G lần lượt thành các điểm nào? b) Phép quay ngược chiều 45° tâm A biến các điểm B, E lần lượt thành các điểm nào?

  • Giải bài 17 trang 112 sách bài tập toán 9 - Cánh diều tập 2

    Cho hình vuông ABCD, I là giao điểm của hai đường chéo AC, BD. E, F, G, H lần lượt là trung điểm các cạnh AB, BC, CD, DA. Q, N lần lượt là giao điểm của AC với HE và AC với GF; M, P lần lượt là giao điểm của BD với EF và BD với GH (Hình 17). Phép quay thuận chiều 90° tâm I có giữ nguyên các tứ giác EFGH và tứ giác MNPQ hay không? Vì sao?

  • Giải bài 18 trang 112 sách bài tập toán 9 - Cánh diều tập 2

    Trên mặt phẳng tọa độ Oxy, cho hình vuông ABCD với A(1; 1), B(–1; 1), C(–1; –1), D(1; –1). Phép quay ngược chiều 45° tâm O biến các điểm A, B, C, D lần lượt thành các điểm A’, B’, C’, D’. Tính diện tích tứ giác A’B’C’D’.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close