Bài 1.14 trang 23 SBT đại số và giải tích 11

Giải bài 1.14 trang 23 sách bài tập đại số và giải tích 11. Giải các phương trình...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình:

LG a

\(\sin 3x =-\dfrac{\sqrt{3}}{2}\)

Phương pháp giải:

Phương trình \(\sin x=a\)

Nếu \(|a|>1\) phương trình vô nghiệm

Nếu \(|a|\le 1\) khi đó phương trình có nghiệm là

\(x=\arcsin a+k2\pi ,k \in \mathbb{Z}\)

và \(x=\pi-\arcsin a+k2\pi ,k \in \mathbb{Z}\)

Lời giải chi tiết:

Ta có: \(-\dfrac{\sqrt{3}}{2}=\sin(\arcsin(-\dfrac{\sqrt{3}}{2}))\)

\(=\sin (-\dfrac{\pi}{3})\)

Khi đó: \(\sin 3x=\sin (-\dfrac{\pi}{3})\)

\(\Leftrightarrow \left[ \begin{array}{l} 3x = -\dfrac{\pi}{3}+k2\pi ,k \in \mathbb{Z}\\3x= \pi-({-\dfrac{\pi}{3}})+k2\pi ,k \in \mathbb{Z}\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l} x = -\dfrac{\pi}{9}+k\dfrac{2\pi}{3} ,k \in \mathbb{Z}\\ x=\dfrac{4\pi}{9}+k\dfrac{2\pi}{3} ,k \in \mathbb{Z}\end{array} \right. \)

Vậy phương trình có các nghiệm là:

\(x = -\dfrac{\pi}{9}+k\dfrac{2\pi}{3} ,k \in \mathbb{Z}\) và \(x=\dfrac{4\pi}{9}+k\dfrac{2\pi}{3} ,k \in \mathbb{Z}\)

Quảng cáo

Lộ trình SUN 2026

LG b

\(\sin (2x-15^o)=\dfrac{\sqrt{2}}{2}\)

Phương pháp giải:

Phương trình \(sin x=a\)

Nếu \(|a|>1\) phương trình vô nghiệm

Nếu \(|a|\le 1\) có \(\beta^o\) thỏa mãn \(\sin\beta^o=a\)
trong đó \(\beta^o=\arcsin a\)

Khi đó phương trình có nghiệm là \(x=\beta^o+k{360}^o ,k \in \mathbb{Z}\)

và \(x={180}^o-\beta^o+k{360}^o ,k \in \mathbb{Z}\)

Lời giải chi tiết:

Ta có: \(\dfrac{\sqrt{2}}{2}=\sin ({45}^o)\)

Khi đó: \(\sin(2x-{15}^o)=\sin ({45}^o)\)

\(\Leftrightarrow \left[ \begin{array}{l}2x-{15}^o = {45}^o+k{360}^o ,k \in \mathbb{Z}\\ 2x-{15}^o = {135}^o+k{360}^o ,k \in \mathbb{Z}\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l}x = {30}^o+k{180}^o ,k \in \mathbb{Z}\\ x = {75}^o+k{180}^o ,k \in \mathbb{Z}\end{array} \right. \)

Vậy nghiệm của phương trình là:

\(x = {30}^o+k{180}^o ,k \in \mathbb{Z}\) và \(x = {75}^o+k{180}^o ,k \in \mathbb{Z}\)

LG c

\(\sin (\dfrac{x}{2}+10^o)=-\dfrac{1}{2}\)

Phương pháp giải:

Phương trình \(sin x=a\)

Nếu \(|a|>1\) phương trình vô nghiệm

Nếu \(|a|\le 1\) có \(\beta^o\) thỏa mãn \(\sin\beta^o=a\)

trong đó \(\beta^o=\arcsin a\)

Khi đó phương trình có nghiệm là \(x=\beta^o+k{360}^o ,k \in \mathbb{Z}\)

và \(x={180}^o-\beta^o+k{360}^o ,k \in \mathbb{Z}\)

Lời giải chi tiết:

Ta có: \(-\dfrac{1}{2}=\sin (-{30}^o)\)

Khi đó: \(\sin(\dfrac{x}{2}+{10}^o)=\sin (-{30}^o)\)

\(\Leftrightarrow \left[ \begin{array}{l}\dfrac{x}{2}+{10}^o = -{30}^o+k{360}^o ,k \in \mathbb{Z}\\ \dfrac{x}{2}+{10}^o = {210}^o+k{360}^o ,k \in \mathbb{Z}\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l}x = -{80}^o+k{720}^o ,k \in \mathbb{Z}\\ x = {400}^o+k{720}^o ,k \in \mathbb{Z}\end{array} \right. \)

Vậy nghiệm của phương trình là:

\(x = -{80}^o+k{720}^o ,k \in \mathbb{Z}\)

và \( x = {400}^o+k{720}^o ,k \in \mathbb{Z}\)

LG d

\(\sin 4x=\dfrac{2}{3}\).

Phương pháp giải:

Phương trình \(sin x=a\)

Nếu \(|a|>1\) phương trình vô nghiệm

Nếu \(|a|\le 1\) có \(\alpha\) thỏa mãn \(\sin\alpha=a\)

trong đó \(\alpha=\arcsin a\)

Khi đó phương trình có nghiệm là \(x=\arcsin a+k2\pi ,k \in \mathbb{Z}\)

và \(x=\pi-\arcsin a+k2\pi ,k \in \mathbb{Z}\)

Lời giải chi tiết:

Ta có: \(\dfrac{2}{3}=\sin(\arcsin\dfrac{2}{3})\)

Khi đó: \(\sin 4x=\sin(\arcsin\dfrac{2}{3})\)

\(\Leftrightarrow \left[ \begin{array}{l} 4x = \arcsin\dfrac{2}{3}+k2\pi ,k \in \mathbb{Z}\\4x= \pi-\arcsin\dfrac{2}{3}+k2\pi ,k \in \mathbb{Z}\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l} x = \dfrac{1}{4}\arcsin\dfrac{2}{3}+k\dfrac{\pi}{2} ,k \in \mathbb{Z}\\x=\dfrac{\pi}{4}-\dfrac{1}{4}\arcsin\dfrac{2}{3}+k\dfrac{\pi}{2} ,k \in \mathbb{Z}\end{array} \right. \)

Vậy phương trình có các nghiệm là:

\(x = \dfrac{1}{4}\arcsin\dfrac{2}{3}+k\dfrac{\pi}{2} ,k \in \mathbb{Z}\)

và \(x=\dfrac{\pi}{4}-\dfrac{1}{4}\arcsin\dfrac{2}{3}+k\dfrac{\pi}{2} ,k \in \mathbb{Z}\)

 HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close