Giải bài 1 trang 59 sách bài tập toán 12 - Chân trời sáng tạo

Cho mặt cầu (left( S right)) có tâm (Ileft( {2; - 1;4} right)) và bán kính (R = 5). Các điểm (Aleft( {3;1;5} right),Bleft( { - 1;11;14} right),)(Cleft( {6;2;4} right)) nằm trong, nằm trên hay nằm ngoài mặt cầu (left( S right))?

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Cho mặt cầu \(\left( S \right)\) có tâm \(I\left( {2; - 1;4} \right)\) và bán kính \(R = 5\). Các điểm \(A\left( {3;1;5} \right),B\left( { - 1;11;14} \right),\)\(C\left( {6;2;4} \right)\) nằm trong, nằm trên hay nằm ngoài mặt cầu \(\left( S \right)\)?

Phương pháp giải - Xem chi tiết

Cho mặt cầu \(\left( S \right)\) có tâm \({\rm{I}}\), bán kính \({\rm{R}}\) và một điểm \(A\).

+ Nếu \(IA < R\): \(A\) nằm trong mặt cầu.

+ Nếu \(IA = R\): \(A\) nằm trên mặt cầu.

+ Nếu \(IA > R\): \(A\) nằm ngoài mặt cầu.

Lời giải chi tiết

Ta có: \(IA = \sqrt {{{\left( {3 - 2} \right)}^2} + {{\left( {1 - \left( { - 1} \right)} \right)}^2} + {{\left( {5 - 4} \right)}^2}}  = \sqrt 6  < R\).

Vậy \(A\) nằm trong mặt cầu \(\left( S \right)\).

\(IB = \sqrt {{{\left( { - 1 - 2} \right)}^2} + {{\left( {11 - \left( { - 1} \right)} \right)}^2} + {{\left( {14 - 4} \right)}^2}}  = \sqrt {253}  > R\).

Vậy \(B\) nằm ngoài mặt cầu \(\left( S \right)\).

\(IC = \sqrt {{{\left( {6 - 2} \right)}^2} + {{\left( {2 - \left( { - 1} \right)} \right)}^2} + {{\left( {4 - 4} \right)}^2}}  = \sqrt 5  = R\).

Vậy \(C\) nằm trên mặt cầu \(\left( S \right)\).

  • Giải bài 2 trang 59 sách bài tập toán 12 - Chân trời sáng tạo

    Viết phương trình mặt cầu \(\left( S \right)\) trong mỗi trường hợp sau: a) \(\left( S \right)\) có tâm \(I\left( {--5;7;6} \right)\) và bán kính \(R = 9\). b) \(\left( S \right)\) có tâm \(I\left( {0; - 3;0} \right)\) và đi qua điểm \(M\left( {4;0; - 2} \right)\). c) \(\left( S \right)\) có đường kính \(EF\) với \(E\left( {1;5;9} \right),F\left( {11;3;1} \right)\).

  • Giải bài 3 trang 59 sách bài tập toán 12 - Chân trời sáng tạo

    Xác định tâm và bán kính của mặt cầu có phương trình sau: a) (left( S right):{left( {x - 7} right)^2} + {left( {y - 3} right)^2} + {left( {z + 4} right)^2} = 49); b) (left( {S'} right):{x^2} + {left( {y + 1} right)^2} + {left( {z - 2} right)^2} = 11); c) (left( S'' right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=25)

  • Giải bài 4 trang 60 sách bài tập toán 12 - Chân trời sáng tạo

    Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính mặt của cầu đó. a) (4{x^2} + {y^2} + {z^2} - 2x - 14y - 7z + 4 = 0); b) ({x^2} + {y^2} + {z^2} + 6x - 4y - 4z - 19 = 0); c) ({x^2} + {y^2} + {z^2} - 4x - 4y - 6z + 40 = 0).

  • Giải bài 5 trang 60 sách bài tập toán 12 - Chân trời sáng tạo

    Người ta muốn thiết kế một quả địa cầu trong không gian \(Oxyz\) bằng phần mềm 3D. Biết phương trình mặt cầu là \(\left( S \right):{\left( {x - 24} \right)^2} + {\left( {y - 24} \right)^2} + {\left( {z - 24} \right)^2} = 100\) (đơn vị cm) và phương trình đường thẳng trục xoay là \({\rm{d}}:\frac{{x - 24}}{1} = \frac{{y - 24}}{1} = \frac{{z - 24}}{{3,25}}\). a) Tìm toạ độ giao điểm của \(d\) và \(\left( S \right)\). b) Tính số đo góc giữa \(d\) và trục \(Oz\). Làm tròn kết quả đến hàng

  • Giải bài 6 trang 60 sách bài tập toán 12 - Chân trời sáng tạo

    Trong không gian \(Oxyz\) (đơn vị trên các trục toạ độ là mét), một ngọn hải đăng có bóng đèn đặt tại điểm \(I\left( {20;40;60} \right)\). a) Cho biết bán kính phủ sáng của đèn trên hải đăng là 3 km, viết phương trình mặt cầu biểu diễn ranh giới của vùng phủ sáng của hải đăng trong không gian. b) Một người đi biển đang ở vị trí \(M\left( {420;340;0} \right)\). Người đó có thể nhìn thấy được ánh sáng của hải đăng hay không? Giải thích.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close