Đề thi học kì 2 môn toán lớp 6 năm 2019 - 2020 trường THCS Cầu GiấyGiải chi tiết đề thi học kì 2 môn toán lớp 6 năm 2019 - 2020 trường THCS Cầu Giấy với cách giải nhanh và chú ý quan trọng
Lựa chọn câu để xem lời giải nhanh hơn
Đề bài Bài 1 (2,5 điểm): Thực hiện phép tính (hợp lý nếu có thể) a) 110−12+75 b) −611.817+−611.917+−511 c) 23.25+25%−0,7:65 Bài 2 (2,5 điểm): Tìm x biết: a) 123x=−56 b) −45:x+12=710 c) |x+13|=52 d) 512x−14x=−1318 Bài 3 (2,0 điểm): Một người mang ra chợ bán 120 quả trứng, có ba người mua hết chỗ trứng. Người thứ nhất mua 13 tổng số trứng, người thứ hai mua 34 số quả trứng còn lại. a) Hỏi ba người, mỗi người mua bao nhiêu quả trứng? b) Số trứng bán cho người thứ hai bằng bao nhiêu phần trăm tổng số trứng? Bài 4 (2,5 điểm): Trên cùng một nửa mặt phẳng có bờ chứa tia Ox, vẽ hai tia Om và On sao cho ^xOm=700,^xOn=350 a) Tính số đo góc mOn. b) Chứng tỏ rằng: Tia On là tia phân giác của ^xOm c) Vẽ tia Oy là tia đối của tia Ox. Tính số đo ^yOn d) Trên một nửa mặt phẳng bờ chứa tia Ox không chứa tia Om, vẽ tia Oz sao cho ^xOz=550. Chứng tỏ ^zOn là góc vuông. Bài 5 (0,5 điểm): Chứng tỏ rằng (1−13)(1−16)(1−110)(1−115)...(1−1253)<25 HẾT LG bài 1 Phương pháp giải: a) Quy đồng mẫu rồi thực hiện cộng, trừ các phân số cùng mẫu b) Sử dụng tính chất ab+ac=a.(b+c) c) Đổi 25% về phân số, rồi thực hiện theo thứ tự nhân chia trước, cộng trừ sau. Lời giải chi tiết: a) 110−12+75 =110−1.52.5+7.25.2=110−510+1410=1−5+1410=1010=1 b) −611.817+−611.917+−511 =−611(817+917)+−511=−611.8+917+−511=−611.1717+−511=−611+−511=−6+(−5)11=−1111=−1 c) 23.25+25%−0,7:65 =2.23.5+25100−710:65=415+14−710.56=415+14−712=4.415.4+1.154.15−7.512.5=1660+1560−3560=16+15−3560=−460=−115 LG bài 2 Phương pháp giải: a) Muốn tìm thừa số chưa biết ta lấy tích chia cho thừa số đã biết b) Sử dụng quy tắc chuyển vế đổi dấu Muốn tìm số chia ta lấy số bị chia chia cho thương c) Sử dụng |A|=m(m≥0) thì A=m hoặc A=−m d) Thu gọn vế trái rồi sử dụng: Muốn tìm thừa số chưa biết ta lấy tích chia cho thừa số đã biết Lời giải chi tiết: a) 123x=−56 53x=−56x=−56:53x=−56.35x=−12 Vậy x=−12 b) −45:x+12=710 −45:x=710−12−45:x=710−510−45:x=210−45:x=15x=−45:15x=−45.5x=−4 Vậy x=−4 c) |x+13|=52 TH1: x+13=52x=52−13x=156−26x=136 TH2: x+13=−52x=−52−13x=−156−26x=−176 Vậy x=136;x=−176 d) 512x−14x=−1318 x(512−14)=−1318x(512−312)=−1318x.212=−1318x.16=−1318x=−1318:16x=−1318.6x=−133 Vậy x=−133 LG bài 3 Phương pháp giải: Giá trị phân số mn của 1 số a cho trước là a.mn Tỉ số phần trăm của hai số a và b là a.100b% Lời giải chi tiết: Một người mang ra chợ bán 120 quả trứng, có ba người mua hết chỗ trứng. Người thứ nhất mua 13 tổng số trứng, người thứ hai mua 34 số quả trứng còn lại. a) Hỏi ba người, mỗi người mua bao nhiêu quả trứng? Người thứ nhất mua số quả trứng là: 13.120=40 quả Số quả trứng còn lại là: 120−40=80 quả Người thứ hai mua số quả trứng là: 34.80=60 quả Người thứ ba mua số quả trứng là: 120−40−60=20 quả b) Số trứng bán cho người thứ hai bằng bao nhiêu phần trăm tổng số trứng? Số trứng bán cho người thứ hai chiếm số phần trăm so với tổng số trứng là: 60.100120%=50% LG bài 4 Phương pháp giải: a) Chứng minh tia On nằm giữa hai tia Ox và Om. Sử dụng đẳng thức cộng góc ^xOn+^nOm=^xOm. b) Chứng minh tia On nằm giữa hai tia Ox và Om và góc ^xOn=^nOm. c) Nhận xét hai góc ^xOn và ^nOy là hai góc kề bù. Sử dụng tính chất hai góc kề bù có tổng số đo bằng 1800. d) Chứng minh tia Ox nằm giữa hai tia On và Oz. Sử dụng đẳng thức cộng góc: ^xOn+^xOz=^nOz. Lời giải chi tiết: Trên cùng một nửa mặt phẳng có bờ chứa tia Ox, vẽ hai tia Om và On sao cho ^xOm=700,^xOn=350 a) Tính số đo góc mOn. Trên cùng một nửa mặt phẳng bờ chứa tia Ox ta có: ^xOn<^xOm(350<700) Nên tia On nằm giữa hai tia Ox và Om ⇒^xOn+^nOm=^xOm⇒350+^nOm=700⇒^nOm=700−350⇒^nOm=350 Vậy ^mOn=350. b) Chứng tỏ rằng: Tia On là tia phân giác của ^xOm Ta có: tia On nằm giữa hai tia Ox và Om ^xOn=^nOm=350 Vậy tia là tia phân giác của ^xOm. c) Vẽ tia Oy là tia đối của tia Ox. Tính số đo ^yOn Tia Oy là tia đối của tia Ox nên ^xOy=1800. Hai góc ^xOn và ^nOy là hai góc kề bù nên ^xOn+^nOy=1800 (tính chất hai góc kề bù) ⇒350+^nOy=1800⇒^nOy=1800−350⇒^nOy=1450 Vậy ^nOy=1450. d) Trên một nửa mặt phẳng bờ chứa tia Ox không chứa tia Om, vẽ tia Oz sao cho ^xOz=550. Chứng tỏ ^zOn là góc vuông. Tia Om và tia Oz nằm trên hai nửa mặt phẳng khác nhau bờ là đường thẳng chứa tia Ox nên tia Ox nằm giữa hai tia On và Oz ⇒^xOn+^xOz=^nOz⇒350+550=^nOz⇒^nOz=900 Vậy ^zOn là góc vuông. LG bài 5 Phương pháp giải: Tính các thừa số trong tích ở vế trái (VT) rồi nhân của từ và mẫu của mỗi phân số với 2. Lời giải chi tiết: Ta có (1−13)(1−16)(1−110) (1−115)...(1−1253) =23.56.910.1415...252253=46.1012.1820.2830...504506=4.10.18.28...5046.12.20.30...506=(1.4).(2.5).(3.6).(4.7)...(21.24)(2.3).(3.4).(4.5)(5.6)...(22.23)=1.2.3.4...212.3.4.5...22.4.5.6.7...243.4.5.6...23=122.243=411<410=25 Vậy (1−13)(1−16)(1−110)(1−115)...(1−1253)<25. HẾT HocTot.Nam.Name.Vn
|