Đề kiểm tra 15 phút - Đề số 4 - Bài 12 - Chương 1 - Hình học 8

Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 12 - Chương 1 - Hình học 8

Đề bài

Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của AB và BC. Gọi E là giao điểm của CM và DN.

a) Chứng minh \(CM \bot DN\) tại E. 

b) Gọi K là trung điểm của DC và AH là đường cao của \(\Delta ADE\) . Chứng minh rằng ba điểm A, H, K thẳng hàng.

Phương pháp giải - Xem chi tiết

Sử dụng: 

Tính chất hai tam giác bằng nhau

Tứ giác có 1 cặp cạnh đối song song và bằng nhau là hình bình hành

Lời giải chi tiết

a) Xét hai tam giác vuông CBM và DCN có NB=NC, BC=DC (vì ABCD là hình vuông)

Suy ra \(\Delta CBM = \Delta DCN\left( {c.g.c} \right)\)

\( \Rightarrow \widehat {{C_1}} = \widehat {{D_1}}\) và \(\widehat {{M_1}} = \widehat {{N_1}}\)

Mà \(\widehat {{M_1}} + \widehat {{C_1}} = {90^ \circ }\) (vì \(\widehat {MBC} = {90^ \circ })\)

\( \Rightarrow \widehat {{N_1}} + \widehat {{C_1}} = {90^ \circ }\)

Trong đó \(\Delta CEN\) ta có \(\widehat {CEN} = {180^ \circ } - \left( {\widehat {{N_1}} + \widehat {{C_1}}} \right) = {90^ \circ }\)

Chứng tỏ \(CM \bot DN.\)

b) Vì K là trung điểm CD, M là trung điểm AB mà \(AB//CD\) và AB = CD (do ABCD là hình vuông)

\( \Rightarrow CK//AM\) và CK = AM. Do đó AMCK là hình bình hành

\( \Rightarrow AK//CM\) mà \(AH// CM\left( { \bot DN} \right).\)

Vậy AK và AH phải trùng nhau (tiên đề Ơ clit) hay ba điểm A, H, K thẳng hàng.

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close