Nội dung từ Loigiaihay.Com
Câu hỏi:
Cho elip có phương trình \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 6\). Khi đó, tọa độ tiêu điểm của elip là:
Phương pháp giải:
Elip \(\left( E \right):\,\,\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1 \Rightarrow {c^2} = {a^2} - {b^2}\)
\( \Rightarrow \)Tiêu điểm của elip là \({F_1}\left( {c;\,\,0} \right),\,\,{F_2}\left( { - c;\,\,0} \right).\)
Lời giải chi tiết:
Xét elip \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 6,\) ta có: \(\left\{ \begin{array}{l}{a^2} = 16\\{b^2} = 9\end{array} \right. \Rightarrow {c^2} = {a^2} - {b^2} \Rightarrow c = \sqrt {{a^2} - {b^2}} = \sqrt 7 \)
Vậy elip có hai tiêu điểm là \({F_1}\left( { - \sqrt 7 ;\,\,0} \right),\,\,{F_2}\left( {\sqrt 7 ;\,\,0} \right).\)
Chọn A.