Bài 14 trang 144 SGK Đại số và Giải tích 11

Cho hàm số:

Đề bài

Cho hàm số: 

\(f(x) = \left\{ \matrix{
{{3 - x} \over {\sqrt {x + 1} - 2}}\,\,\,\,\,\,\text{ nếu  } x \ne 3 \hfill \cr 
m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ nếu  }x = 3 \hfill \cr} \right.\)

Hàm số đã cho liên tục  tại \(x = 3\) khi \(m\) bằng:

A. \(4\)                    B. \(-1\)

C. \(1\)                    D. \(-4\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Hàm số liên tục tại \(x=3\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right)\)

Lời giải chi tiết

Ta có:

+) \(\displaystyle f(3) = m\)

+) \(\displaystyle \mathop {\lim }\limits_{x \to 3} f(x) \) \(\displaystyle = \mathop {\lim }\limits_{x \to 3} {{3 - x} \over {\sqrt {x + 1} - 2}} \)\(\displaystyle = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {3 - x} \right)\left( {\sqrt {x + 1}  + 2} \right)}}{{x + 1 - 4}}\) \(\displaystyle = \mathop {\lim }\limits_{x \to 3} {{(3 - x)(\sqrt {x + 1} + 2)} \over { - (3 - x)}} \) \(\displaystyle = \mathop {\lim }\limits_{x \to 3} {{\sqrt {x + 1} + 2} \over { - 1}}\) \(\displaystyle = \dfrac{{\sqrt {3 + 1}  + 2}}{{ - 1}}\) \(\displaystyle = - 4\)

Hàm số \(\displaystyle y = f(x)\) liên tục tại \(\displaystyle x = 3\)\(\displaystyle ⇔ \mathop {\lim }\limits_{x \to 3} f(x) = f(3) \Leftrightarrow m =  - 4\)

Chọn đáp án D.

 HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close