Nội dung từ Loigiaihay.Com
Đồ thị hàm số bậc ba luôn
cắt trục hoành tại $3$ điểm phân biệt.
cắt trục tung tại $1$ điểm duy nhất
cắt trục hoành tại $1$ điểm duy nhất.
cắt trục hoành tại $2$ điểm phân biệt.
- Đồ thị hàm số bậc ba luôn cắt trục tung tại $1$ điểm duy nhất $\left( {0;d} \right)$ nên B đúng.
- Đồ thị hàm số bậc ba có thể cắt trục hoành tại $1,2$ hoặc $3$ điểm nên các đáp án A, C, D đều chưa chính xác.
Đáp án : B
Các bài tập cùng chuyên đề
Tập xác định của hàm số $y = - \dfrac{1}{2}{x^3} + 2x - 1$ là:
Hàm đa thức bậc ba có thể có mấy cực trị?
Hàm đa thức bậc ba không có cực trị và nghịch biến có bảng biến thiên dạng nào dưới đây?
Cho bảng biến thiên hình bên, hàm số nghịch biến trên:
Đồ thị hàm số bậc ba có mấy tâm đối xứng?
Hàm số $y = f\left( x \right) = a{x^3} + b{x^2} + cx + d$ có đồ thị như hình vẽ, chọn kết luận đúng:
Chọn kết luận đúng:
Nếu điểm cực đại của đồ thị hàm số bậc ba nằm ở trục hoành thì:
Nếu điểm cực tiểu của đồ thị hàm số bậc ba nằm ở trục hoành thì đồ thị hàm số có mấy điểm chung với $Ox$?
Cho hàm số $y = f\left( x \right)$ có hai cực trị thỏa mãn ${y_{CD}}.{y_{CT}} < 0$. Khi đó:
Cho hàm số bậc ba $y = f\left( x \right)$ có hai điểm cực trị thỏa mãn ${y_{CD}}.{y_{CT}} > 0$. Khi đó, đồ thị hàm số có mấy điểm chung với trục $Ox$?
Chọn kết luận đúng: