Bài 6 trang 116 Sách bài tập Hình học lớp 12 Nâng caoa)Cho ba điểm A(2;5;3),B(0;1;2),C=(x;y;6).
Lựa chọn câu để xem lời giải nhanh hơn
LG a Cho ba điểm A(2;5;3), B(3;7;4),C=(x;y;6). Tìm x, y để A, B, C thẳng hàng Lời giải chi tiết: A,B,C thẳng hàng\( \Leftrightarrow \overrightarrow {AC} = k\overrightarrow {AB} \) \( \Rightarrow \left\{ \matrix{ x - 2 = k \hfill \cr y - 5 = 2k \hfill \cr 3 = k \hfill \cr} \right. \Rightarrow \left\{ \matrix{ x = 5 \hfill \cr y = 11 \hfill \cr k = 3 \hfill \cr} \right.\) Vậy với x = 5, y = 11 thì A, B, C thẳng hàng. LG b Cho hai điểm A(-1;6;6), B(3;-6;-2). Tìm điểm M thuộc \(mp\left( {Oxy} \right)\) sao cho MA+MB nhỏ nhất. Lời giải chi tiết: Vì \({z_A} = 6,{z_B} = - 2 \Rightarrow {z_A}.{z_B} < 0 \Rightarrow A,B\) ở hai phía của mp(Oxy). Vậy MA + MB nhỏ nhất khi A, B, M thẳng hàng hay \(\overrightarrow {AM} ,\overrightarrow {AB} \) cùng phương \( \Leftrightarrow \left[ {\overrightarrow {AM} ,\overrightarrow {AB} } \right] = \overrightarrow 0 .\) Ta có \(\overrightarrow {AB} = \) (4;-12;-8). Giả sử M(x;y;0)\( \in mp\left( {Oxy} \right)\) thì \(\overrightarrow {AM} = (x + 1;y - 6; - 6).\) \(\eqalign{ & \left[ {\overrightarrow {AM} ,\overrightarrow {AB} } \right]\cr& = \left( {\left| \matrix{ y - 6 \hfill \cr - 12 \hfill \cr} \right.\left. \matrix{ - 6 \hfill \cr - 8 \hfill \cr} \right|\left| \matrix{ - 6 \hfill \cr - 8 \hfill \cr} \right.\left. \matrix{ x + 1 \hfill \cr 4 \hfill \cr} \right|;\left| \matrix{ x + 1 \hfill \cr 4 \hfill \cr} \right.\left. \matrix{ y - 6 \hfill \cr - 12 \hfill \cr} \right|} \right) \cr & = ( - 8y - 24;8x - 16; - 12x - 4y + 12). \cr} \) Ta có : \(\left[ {\overrightarrow {AM} ;\overrightarrow {AB} } \right] = \overrightarrow 0 \Leftrightarrow \left\{ \matrix{ - 8y - 24 = 0 \hfill \cr 8x - 16 = 0 \hfill \cr - 12x - 4y + 12 = 0 \hfill \cr} \right.\) \(\Rightarrow \left\{ \matrix{ x = 2 \hfill \cr y = - 3. \hfill \cr} \right.\) Vậy MA + MB ngắn nhất khi \(M=(2;-3;0)\). HocTot.Nam.Name.Vn
|