Bài 11 trang 117 Sách bài tập hình học lớp 12 nâng cao

Chứng tỏ bốn điểm sau đây

Đề bài

Chứng tỏ bốn điểm sau đây là bốn đỉnh của một hình bình hành và tính diện tích của hình bình hành đó: (1; 1; 1), (2; 3; 4), (6; 5; 2), (7; 7; 5).

Lời giải chi tiết

Ta gọi A(1;1;1), B(2;3;4); C(7;7;5); D(6; 5; 2)

Khi đó \(\overrightarrow {AB}  = \overrightarrow {DC}  = (1;2;3).\) Vậy ABCD là hình bình hành.

Suy ra \({S_{ABCD}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right]} \right|\)

Ta có :

\(\eqalign{  & \overrightarrow {AB}  = (1;2;3),\overrightarrow {AD}  = (5;4;1)  \cr  &  \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right] = \left( {\left| \matrix{  2 \hfill \cr  4 \hfill \cr}  \right.\left. \matrix{  3 \hfill \cr  1 \hfill \cr}  \right|;\left| \matrix{  3 \hfill \cr  1 \hfill \cr}  \right.\left. \matrix{  1 \hfill \cr  5 \hfill \cr}  \right|;\left| \matrix{  1 \hfill \cr  5 \hfill \cr}  \right.\left. \matrix{  2 \hfill \cr  4 \hfill \cr}  \right|} \right)\cr& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= ( - 10;14; - 6)  \cr  &  \Rightarrow {S_{ABCD}} = \sqrt {{{( - 10)}^2} + {{14}^2} + {{( - 6)}^2}} \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \sqrt {332}  = 2\sqrt {83} .  \cr  &  \cr} \)

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close